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Abstract: Dynamic models give detailed information about the influence of many parameters on the behaviour of the biochemical 

process of interest. Parameter optimization of dynamic models is used in parameter estimation tasks and in design tasks. A 

drawback of the popular family of global stochastic optimization methods is the stochastic nature of the convergence of the best 

value of objective function to the global optimum or a value close to that. Therefore the optimization can take long time until a 

stable value of objective function is reached. Even then the risk of stagnation far from global optimum remains. That sets force to 

look for efficient approaches to reduce optimization time and discover cases of poor performance of optimization methods. 
Parallel optimization runs of identical optimization tasks can be used to reduce the impact of stochastic processes used in 

stochastic optimization methods. Consensus and stagnation criteria are proposed to terminate a set of parallel optimization runs 

when it is assessed that no significant improvements of the best value of the objective function are expected. 

Four automatically detectable cases of behaviour of a group of parallel optimization runs are analysed: 1) reaching of consensus 

criterion (consensus case), 2) stagnation of all optimization runs without reaching the consensus criterion (stagnation case), 3) 

stagnation at the initial value of the objective function, 4) lack of feasible solution. 

The proposed approach can be used automating the termination of optimization process when no further progress of the best value 

of objective function is expected. Suitability of particular optimization method with its settings for particular optimization task can 

be assessed analysing the dynamics of objective function’s best values of parallel runs.  

 

Keywords: optimization, parameter estimation, design task, dynamic modelling, convergence dynamics. 

 

1 Introduction 

The mission of systems biology and synthetic biology in 

metabolic engineering tasks (Mendes and Kell, 1998) is to 

facilitate the development of new bioprocesses by the help of 

in silico procedures thus reducing the amount of necessary 

biological experiments which are more costly both in terms of 

time and resources.  
Dynamic models give detailed information about the 

influence of many parameters of the network like kinetic 

parameters of reactions and concentrations of reactants 

(Stelling, 2004). The most typical approach to represent 

biochemical networks is through a set of coupled deterministic 

ordinary differential equations intended to describe the 

network and the production and consumption rates for the 

individual species involved in the network (Balsa-Canto et al., 

2010). The expected increase of the size of dynamic models 

(Jamshidi and Palsson, 2008) will facilitate their application.  

Serious challenge in case of optimization of dynamic model is 

lack of analytical optimization solutions to solve systems of 

nonlinear differential equations. 
Therefore the numerical methods are used in optimization 

tasks of biochemical networks. The numerical methods can be 

classified as local and global optimum seeking methods 

(Balsa-Canto et al., 2008; Mendes and Kell, 1998). Usually the 

global optimization methods are used to avoid stagnation of 

the solution in local optima. There are two classes of global 

numerical optimization methods: deterministic and stochastic.  

The advantage of some of deterministic methods is the 

guaranteed reach of global optimum for the price of unknown 

computation time (Banga, 2008; Moles et al., 2003). 

Therefore, the stochastic global optimization methods are the 

most popular in optimization tasks of biochemical networks 

due to their universality and relatively fast convergence to the 

global optimum close value (Banga, 2008; Moles et al., 2003).  
In case of single optimization run of stochastic global 

optimization method the termination criterion usually is a 

stable best value of the objective function for a relatively long 

time and it cannot be determined if that is a stagnation at local 

optima or the best value is reached. Therefore in case of 

stagnation of a single optimization run at local optima 

misleading conclusions can be done about the optimization 

potential of given set of adjustable parameters (Mozga and 

Stalidzans, 2011c).  
The convergence of global stochastic optimization methods 

is analysed in case of parameter estimation tasks (Baker et al., 

2010; Balsa-Canto et al., 2008, 2010; Mendes and Kell, 1998; 

Moles et al., 2003). Convergence dynamics for design 
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optimization (Mendes and Kell, 1998) or more generally 

process optimization tasks where the properties of metabolic 

pathways are changed with the aim of enhancing the 

production of some metabolite of interest (Mendes and Kell, 

1998; Moles et al., 2003) is analyzed in several recent 

publications (Mozga and Stalidzans, 2011b, 2011c; Mozga et 

al., 2011). A software tool ConvAn (Kostromins et al., 2012) 

for analysis of convergence dynamics suitable for both 

parameter estimation and design tasks has been developed for 

statistical analysis of performance of stochastic optimization 

methods. The convergence speed and reliability of 

optimization method are critical in design problems of 

biochemical networks (Mozga and Stalidzans, 2011b, 2011c) 

where even relatively small number (5-15) of adjustable 

parameters of the model cause hundreds or thousands of 

combinations to be explored (Mozga and Stalidzans, 2011a). 

The combinatorial explosion of number of adjustable 

parameter combinations sets force to look for efficient 

approaches to reduce necessary optimization time. 
A set of criteria is proposed to terminate a parallel 

optimization runs when it is assessed that no significant 

improvements of the best value of objective function are 

expected. The first criterion is the consensus of parallel 

optimization runs which indicate that all the parallel 

optimization runs have converged via different trajectories to 

the same solution indicating also good performance of the 

optimization method (Mozga and Stalidzans, 2011b, 2011c). 

The second criterion is a long stagnation of all optimization 

runs at different best values indicating poor performance of 

optimization method (Mozga and Stalidzans, 2011b, 2011c; 

Mozga et al., 2011). 
Use of proposed criteria for automatic termination of 

optimization both for parameter estimation and design tasks 

reduce the length of optimization experiment by more 

intensive use of computational resources due to parallel 

optimization runs. The main advantage compared to a single 

optimization run is the early detection of the best value 

(consensus of independent optimization runs) or bad 

performance of optimization (stagnation of at least one 

optimization run). 

2 Matherials and methods 

Yeast glycolysis models from Biomodels data base (Le 

Novère et al., 2006) are used to examine the performance of 

consensus and stagnation criteria. Criteria are demonstrated in 

design optimization tasks where objective function has to be 

maximized.  Software COPASI (Hoops et al., 2006) is used as 

optimization tool. Parallel optimization experiments using 

stochastic global optimization methods with COPASI 4.7 

Build 34 are automatically set and performed using software 

CoRunner (Sulins and Stalidzans, 2012). Since stochastic 

optimization methods involve use of random numbers, 

successive optimization runs on the same model with the same 

algorithm converge to the best value in a different trajectory. 

Convergence dynamics of optimization runs is analysed using 

software ConvAn (Kostromins et al., 2012). 
In the maximization experiments the values are normalized 

the way that 0% of objective function value corresponds to the 

objective function value of unmodified model while 100% 

correspond to the best value of objective function found in any 

of parallel runs in particular time moment. Thus the value of 

objective function that correspond 0% remains constant while 

the value of 100% increases during optimization until the best 

value is reached or stagnation starts. 
In case of minimization experiments the best value of 

objective function is decreasing and the module of changes of 

the best value of objective function has to be taken into 

account calculating 100% value. 

Consensus criterion is fulfilled when all of parallel 

optimization runs reach a value of objective function which 

lies within pre-defined consensus corridor. The consensus 

corridor can be expressed in per cents: 3% corridor would 

mean that the best values of all parallel optimization runs have 

to be within 97-100% corridor. Criterion was analysed 

optimizing yeast glycolysis model of Galazzo and Bailey 

(Galazzo and Bailey, 1990) for ethanol production (Rodríguez-

Acosta et al., 1999). The model contains 2 compartments, 8 

reactions and 9 metabolites. Objective function in all 

optimization runs was to maximize flux of pyruvate kinase 

which is proportional to the ethanol production. 

Concentrations of enzymes catalysing reactions ATPase, GAP, 

Glucose in, Hexokinase, Phosphofructokinase and Pyruvate 

kinase were chosen as adjustable parameters. 
Evolutionary programming optimization method (Back and 

Schwefel, 1993; Back et al., 1997;  Fogel et al., 1992) was 

used with following method settings: Number of Generations: 

30000; Population Size: 20; Random Number Generator: 1; 

Seed: 0. The values of adjustable parameters were allowed to 

change within a wide range from -99% up to 900% from their 

initial values. “Steady state” subtask of optimization within 

COPASI was chosen to avoid solutions without steady state.  
Stagnation criterion is fulfilled when all the parallel 

optimization runs do not change their best value of objective 

function for a pre-set stagnation delay time while the 

consensus is not reached. The pre-set stagnation delay time 

can be defined in time units or as per cents of optimization 

duration.  Stagnation was analysed using yeast glycolysis 

model of Hynne and co-workers (Hynne et al., 2001). The 

model contains 2 compartments, 24 reactions and 25 

metabolites. Objective function in all optimization runs was 

   
            

              
                

The sets of adjustable parameters and the optimization 

method were chosen on purpose to observe the stagnation 

behaviour (Mozga and Stalidzans, 2011b). Concentrations of 

enzymes catalysing five reactions (Hexokinase, Alcohol 

dehydrogenase, ATP consumption, Glycerol synthesis, 

Phosphofructokinase) were chosen as adjustable parameters. 

Evolutionary programming optimization method (Back and 

Schwefel, 1993; Back et al., 1997; Fogel et al., 1992) was used 

with following method settings: Number of Generations: 

30000; Population Size: 20; Random Number Generator: 1; 

Seed: 0. The values of adjustable parameters were allowed to 

change within a wide range from -99% up to 1000% from their 

initial values. “Steady state” subtask of optimization within 

COPASI was chosen to avoid solutions without steady state. 
Five optimization experiments were performed for each 

experimental setup number of reactions for each optimization 

method on a server running 64-bit Microsoft Windows Server 

2008 Standard Service Pack 2 operating system. Server has 4x 

QuadCore Intel Xeon MP E7330 2400 MHz CPU and 32768 

MB of RAM. Single processor per task was used as COPASI 

does not support optimization with parallel task distribution. 
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3 Results and discussion 

Two criteria of termination of parallel optimization runs are 

tested for their ability to terminate the optimization when no 

significant increase of the best value is expected.  

Generally there are four cases of behaviour of a group of 

parallel optimization runs: 1) reaching of consensus criteria 

(consensus case), 2) stagnation of all optimization runs without 

reaching the consensus criteria (stagnation case), 3) consensus 

at the initial value of objective function, 4) lack of feasible 

solution.  

3.1. Consensus 

Convergence to consensus best value of the objective 

function indicates good performance of optimization when all 

the parallel runs of stochastic optimization method have 

reached the same or very similar best value within the 

consensus corridor. That is a good reason to conclude that the 

best value found is close to the global optimum still keeping in 

mind that finding global optimum cannot be guaranteed by 

stochastic global optimization methods (Banga, 2008; Moles et 

al., 2003). A consensus delay time (determined in time units or 

per cents of duration of optimization runs) can be used 

optionally to avoid coincidental short-time consensus.  
Illustrative consensus experiment (Fig.1) demonstrates 

application of consensus criterion. In this particular case there 

is no further improvement after fulfilling of automatic 

consensus criterion. On the other hand it is not guaranteed that 

there will not be further improvement as the behaviour of 

stochastic optimization methods cannot be predicted with full 

confidence. To increase the confidence about correctness of 

automatically made decision the number of parallel runs can be 

increased or the consensus corridor can be narrowed. Both 

changes will increase the probability of longer duration of 

optimization.  

3.2. Stagnation 

Stagnation case means that all the parallel optimization 

runs do not change their value for the delay time and at least 

one optimization run stagnate at value which is not within the 

pre-set consensus corridor of the best one gives indication 

about risk that the optimization method does not perform well 

for particular optimization task. There is increased risk that 

also the other runs stagnate at values which are far from the 

optimal solution. It is suggested to test another optimization 

method or settings of the method to improve the performance. 

In case if several methods perform similar way it might 

indicate the peculiarity of the model or particular set of 

adjustable parameters (Mozga and Stalidzans, 2011c).   
There is a risk of false detection of stagnation if the pre-set 

stagnation delay time is too short. This kind of risk can be 

reduced by increased delay time which increases the duration 

of optimization as a consequence. 

 

Fig. 1. The convergence dynamics of consensus case with five (a) and ten (b) parallel optimization runs. All optimization runs have 

reached the 3% consensus corridor in the time moment “1”. The consensus delay time “2” is 900s and lasts till the termination at the time 

moment “3”.  
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Fig. 2. The convergence dynamics of stagnation case with five parallel optimization runs. The stagnation termination criterion is fulfilled 

at the end of the time period “2” which represents the stagnation delay time.  In case of a shorter stagnation time (period “1”) the 

stagnation delay time counter is reset until the next stagnation starts. 

3.3. Stagnation at the initial value 

Stagnation of all parallel runs at the initial value of the 

objective function can be explained at least in two ways: 1) 

initial parameters of the model correspond to the best 

parameter values within the solution space and the 

optimization task is completed or 2) poor performance of 

optimization. The first case has very low probability. Still it 

cannot be fully ignored being a special case of consensus. 

Usually stagnation at the initial value of objective function is 

caused by poor performance of optimization method, huge 

solution space due to high number of adjustable parameters, 

complexity of computation because of the size or peculiarities 

of the model or other reasons. Improvement of optimization 

performance can be done by alterations of optimization 

method or its settings. Stagnation of all parallel runs at the 

initial value of the objective function is interesting as formally 

both consensus and stagnation criteria are reached. Therefore it 

is necessary to test if the value of objective function of initial 

model is improved to recognize this case automatically. 

Optimization can be terminated if initial value is not improved 

by any of parallel runs for some delay time.  

3.4. Lack of feasible solution 

Lack of feasible solution is a different case of stagnation at 

the initial value of objective function described above. Even 

very fast and reliably converging optimization method cannot 

find any solution if that is excluded by too strict or even 

contradicting constraints. In this case the best value usually is 

replaced by different expressions like “-INF”, “NAN” or 

others in different optimization software.  In this case it is 

useful first to check the existence of feasible steady states of 

the model with given constraints. If the feasible solution is not 

excluded by constraints, the optimization methods or their 

settings should be changed to improve the performance.  

Stagnation criterion can detect this case automatically if the 

expression of objective function that corresponds to the lack of 

any solution with steady state in particular optimization tool is 

known. Automatic detection of this case should be used 

introducing some delay time to ensure even a small feasible 

area in the proposed solution space to be found.  

4 Conclusion 

Consensus and stagnation criteria of termination of parallel 

optimization runs of global stochastic optimization methods 

have been tested for their use to terminate the optimization 

when no significant increase of the best value of the objective 

function is expected. This approach can give faster and more 

accurate conclusion about the best value of objective function 

at the cost of computational resources needed for performance 

of parallel runs. 

Consensus criterion is fulfilled when all of parallel 

optimization runs reach a value of objective function which 

lies within pre-defined consensus corridor. 

Stagnation criterion is fulfilled when all the parallel 

optimization runs do not change their best value of objective 

function for a pre-set stagnation delay time while the 

consensus is not reached. The pre-set stagnation delay time can 

be defined in time units or as per cents of optimization 

duration. 

Generally there are four automatically detectable cases of 

behaviour of a group of parallel optimization runs: 1) reaching 

of consensus criterion (consensus case), 2) stagnation of all 

optimization runs without reaching the consensus criterion 

(stagnation case), 3) stagnation at the initial value of the 

objective function, 4) lack of feasible solution. Optimization 

task can be considered as successfully completed only in the 

consensus case. Still also the other cases give valuable 

information about reasons of failure of particular setting of 

optimization task or optimization methods. 

To reduce the risk of finding suboptimal solution the 

number of parallel runs can be increased or the consensus 

corridor can be narrowed. The side effect is the increase of 

probability of longer optimization duration. The probability of 

false detection of stagnation can be reduced by increase of the 

pre-set delay time causing increase of optimization duration. 
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Abstract: DNA-microarray based gene-expression analysis is based on hybridization events between messenger RNA (mRNA) and 

single stranded DNA probes. In oligo nucleotide DNA-microarrays the probes consist of approximately 20 to 80 nucleotides long 

DNA-molecules. Consequently, several unique probes perfectly matching each single open reading frame (ORF) of mono- or 

polycistronic mRNA are usually used. If these probes are distributed over the whole length of the mRNA molecule, information 

about mRNA-degradation patterns can be gathered with data clustering methods.  

Here we report analysis of expression of 1107 open reading frames from the cyanobacterium Nostoc PCC 7120. Each open 

reading frame was covered by 10 unique 25 nucleotides long probes and analyzed by 4 independent DNA-microarray experiments. 

Both the positional information and the absolute expression value for each probe were used to infer clusters of transcripts that 

show similar expression patterns. Hierarchical and fuzzy k-means clustering yielded comparable results. Our results suggest that 

several different mRNA-degradation mechanisms, specific for certain transcripts, work in concert. 

 

Keywords: Bioinformatics, Computational Biology, DNA-Microarrays, Gene-Expression, mRNA-Degradation. 

 

1 Introduction 

In living organisms, information generally flows from 

DNA via mRNA to protein (Fig. 1).  

Each protein is encoded by a gene, the expression of which 

is regulated by an upstream promoter region. The expression 

process is mediated by two steps: transcription of one 

(monocistronic transcript) or many (polycistronic transcript) 

genes to mRNA and translation of the mRNA to protein(s), 

respectively. As long as a mRNA molecule is present in the 

bacterial cell it will be translated to protein. In order to respond 

quickly to changing biotic or abiotic conditions, the expression 

process is regulated at different levels. Of major importance is 

the regulation of the amount of transcripts (mRNA-molecules) 

(Lackner and Bähler, 2008). Therefore, the transcription of 

genes is switched on and off or regulated up or down. These 

regulatory events can only take effect, if the corresponding 

mRNA is inactivated quickly.  

One known and obvious process of transcript inactivation 

is mRNA-degradation, which has been analyzed intensively in 

the past (see, e.g.  Carpousis et al., 1999; Garneau et al., 2007; 

Houseley and Tollervey, 2009; Kristoffersen et al., 2012). In 

Escherichia coli, mRNA-degradation is mediated by the 

combined action of endo- and exoribonucleases (Nierlich and 

Murakawa, 1996). 

 

 

Fig. 1. Gene Expression – The linear sequence of four different nucleotides (A, C, T, G) on the DNA carries information. Defined 

stretches of DNA, genes (G1, G2, G3), encode for proteins (P1, P2, P3). In bacteria, several genes are usually organized as operons and 

regulated by a common promoter (Pr). 
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More than 20 ribonucleases have been identified in this 

organism. Degradation initiates with an endoribonucleolytic 

cleavage followed by exoribonuclease digestion to generate 5’-

mononucleotides. The exoribonucleases PNPase and RNase II 

are key players for the 3’ to 5’ processive degradation, while 

the exoribonucleases RNase R is particularly important for 

removing mRNA fragments with extensive secondary 

structures (Cheng and Deutscher, 2005). The 5’-end dependent 

endonuclease RNase E catalyzes a 5’ to 3’ processive 

degradation (Mackie, 1998). Only RNase E and RNase P 

appear to be essential for growth since no knock-out mutant 

could be isolated (Donovan and Kushner, 1986). All 

components are organized as a large multiprotein complex, 

known as the RNA-degradosome. Genes encoding enzymes 

related to PNPase, RNase II, and RNase R can be found in the 

cyanobacterium Nostoc PCC 7120 as well.  

Although transcript stability has been analyzed for some 

prokaryotes (Selinger et al., 2003) the variety of the 

corresponding mRNA-degradation pathways remain only 

partially characterized (Kaberdin et al., 2011). This initiated us 

to examine DNA-microarray based gene-expression data 

generated in our lab for mRNA-degradation patterns. In 

contrary to other DNA-microarray based studies (e.g.  Selinger 

et al., 2003) we do not repress gene expression by application 

of transcriptional inhibitors but use data from one single time-

point. This has the advantage of an undisturbed data set at the 

cost of less resolution. Each open reading frame was covered 

by 10 unique probes and analyzed by 4 independent DNA-

microarray experiments. Both the positional information and 

the absolute expression value for each probe were used to infer 

clusters of transcripts that show similar expression patterns. 

Our results suggest that several different mRNA-degradation 

mechanisms, specific for certain transcripts, work in concert.  

Based on mRNA degradation in E. Coli, three degradation 

patterns can be expected to appear in the expression data. 

These are illustrated in Fig. 2. 

 

 

Fig. 2. Expected Degradation Patterns – (A) 5’ to 3’ degradation, (B) 3’ to 5’ degradation, (C) simultaneous degradation from 5’ to 3’ and 

3’ to 5’

2 Matherials and methods 

2.1. Strain and Culture Conditions 

The cyanobacterium Nostoc sp. strain PCC 7120 (Nostoc 

PCC 7120; formerly Anabaena PCC 7120) was grown in either 

nitrogen fixing or non-nitrogen fixing conditions as previously 

described (Hansel et al., 2001).  

2.2. Preparation of Biotin Labeled, Fragmented cRNA 

Total RNA from Nostoc PCC 7120 was extracted as 

previously described (Axelsson and Lindblad, 2002). From 10 

g of total RNA, low molecular weight RNA, e.g. tRNA and 

5S rRNA, was removed by size exclusion chromatography 

(MEGAclear kit, Ambion). To remove 16S and 23S rRNA, the 

MICROBExpress kit from Ambion was used. The remaining 

RNA was linearly amplified by a modified Eberwine protocol 

(Eberwine et al., 1992) as follows. If not differently stated, all 

enzymes and chemicals were purchased from Invitrogene. 

First Strand Synthesis. The pelleted RNA from the 

previous mRNA enrichment steps was resuspended in 4.25 l 

water and mixed with 1 l of T7 random hexamers (0.5 g/l; 

5’-GGC CAG TGA ATT GTA ATA CGA CTC ACT ATA 

GGG AGG CGG NNN NNN-3’). Following incubation at 

70ºC for 10 min, 4ºC for 2 min and 23ºC for 5 min, 3.75 l 

reaction mix (2 l 5x first strand synthesis buffer, 1 l 0.1 M 

DTT, 0.5 l 10 mM dNTP mix, 0.25 l 40 U RNase OUT and 

200 U Superscript II polymerase) was added to the 

RNA/primer mix. First strand synthesis reaction was 

performed with the following temperature scheme: 37ºC for 20 

min, 42ºC for 20 min, 50ºC for 15 min, 55ºC for 10 min and 

65ºC for 15 min. After adding 0.5 l RNase H, the reaction 

mix was incubated for another 30 min at 37ºC and 2 min at 

95ºC. Then, 1.7 l random hexamer primers (0.3 g/l) were 

added and the mix incubated for 10 min at 70ºC. 

Second Strand Synthesis. The product of the first strand 

synthesis was mixed with 43.8 l water, 15 l 5x second strand 

synthesis buffer, 20 U DNA polymerase I, 1.5 l 10 mM dNTP 

and 1 U RNaseH and incubated for 2 h at 16ºC. After addition 

of 10 U T4 DNA-polymerase the reaction mix was first 

incubated at 16ºC for 15 min and then at 70ºC for 10 min.  

Isolation of ds-cDNA. Double stranded cDNA was 

isolated from the product of second strand synthesis according 

to standard procedures (Maniatis et al., 1982).  

In vitro Transcription. The pelleted ds-cDNA was 

resuspended in 1.5 l water. The MEGAscript T7 kit (Ambion) 

was used for in vitro transcription. In addition to the standard 

nucleotides, 3.75 l 10 mM Bio-16-CTP (NEN) and 3.75 l 75 
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mM Bio-11-UTP (Roche) were added to the reaction mix. This 

led to the formation of biotinylated cRNA. 

cRNA Isolation. The RNeasy kit (Qiagen) was applied for 

cRNA isolation. All steps were performed according to the 

manufacturer’s instructions.  

cRNA Fragmentation. For cRNA fragmentation 15 g cRNA 

was resuspended in 2.5 l water and 2.5 l 2x fragmentation 

buffer (5x stock: 200 mM Tris, 150 mM Mg-acetate, 500 mM 

K-acetate, pH 8.1). The reaction mix was incubated for 5 min 

at 94ºC. The fragmentation reaction was performed 

immediately prior to hybridization.  

2.3. Oligonucleotide Probe Selection 

A unique Nostoc PCC 7120 probe set (as many 25mer 

probes per open reading frame (ORF) as possible) was 

calculated based on the full genome sequence (retrieved online 

from CyanoBase: 

http://www.kazusa.or.jp/cyanobase/Anabaena/index.html) 
using a combination of sequence uniqueness criteria and rules 

for selection of oligonucleotides likely to hybridize with high 

specificity and sensitivity. The selection criteria were 

essentially as described in Lockhart et al.  (Lockhart et al., 

1996) with modifications for the longer probes used here 

(25mers instead of 20mers). If available, 10 unique probes per 

ORF were used in the experiments. 
2.4. DNA-Microarray Production and In Situ Oligo 

Nucleotide Synthesis 

Light-activated in situ oligonucleotide synthesis was 

performed essentially as described by Singh-Gasson et al.  

(Singh-Gasson et al., 1999) using a digital micromirror device 

(Güimil et al., 2003). The synthesis was performed within the 

geniom one device (Febit AG, Heidelberg, Germany) on an 

activated three-dimensional reaction carrier consisting of a 

glass-silica-glass sandwich (DNA processor). Four 

individually accessible microchannels (referred to as arrays) 

etched into the silica layer of the DNA processor are connected 

to the microfluidic system of the geniom device. Using 

standard DNA synthesis reagents and 3Â´-phosphoramidites 

with a photolabile protecting group (Beier and Hoheisel, 2000; 

Hasan et al., 1997), oligonucleotides were synthesized in 

parallel in all four translucent arrays of one reaction carrier. 

Prior to synthesis, the glass surface was activated by coating 

with a silane-bound spacer. The probe sets synthesized within 

the four arrays may be the same but also can be different on all 

arrays. 

2.5. Hybridization 

Hybridization was performed with 7.5 g fragmented 

cRNA (see above) in a final volume of 10 l. Hybridization 

solutions contained 100 mM MES (pH 6.6), 0.9 M NaCl, 20 

mM EDTA and 0.01% (v/v) Tween 20. In addition, the 

solutions contained 0.1 mg/ml sonicated herring sperm DNA 

and 0.5 mg/ml BSA. RNA samples were heated in the 

hybridization solution to 95ºC for 3 min followed by 45ºC for 

3 min before being placed in an array which had been 

prehybridized for 15 min with 1% (w/v) BSA in hybridization 

solution at RT. Hybridizations were carried out at 45ºC for 16 

h. After removing the hybridization solutions, arrays were first 

washed with non-stringent buffer (0.005% (v/v) Triton X-100 

in 6 x SSPE) for 20 min at 25ºC and subsequently with 

stringent buffer (0.005% (v/v) Triton X-100 in 0.5 x SSPE) for 

20 min at 45ºC. After washing, the hybridized RNA was 

fluorescence-stained by incubating with 10 g/ml streptavidin-

phycoerythrin and 2 g/l BSA in 6 x SSPE at 25ºC for 15 

min. Unbound streptavidin-phycoerythrin was removed by 

washing with non-stringent buffer for 20 min at 25ºC. 

Hybridizations were not performed competitive on one DNA 

processor but separated with one condition per DNA 

processor. 

2.6. Detection & Raw Data Generation 

The CCD-camera based fluorescence detection system, 

equipped with a Cy3 filter set, integrated into the geniom one 

automate was used. 36 pixels per spot were available for data 

analysis. 

Processing of raw data, including background correction, 

array to array normalization and determination of gene 

expression levels, as well as calculation of fold-change values 

were performed as described before (Zhou and Abagyan, 

2002). All steps were carried out using the PROP algorithm of 

the geniom application software which is based on the MOID 

algorithm (Zhou and Abagyan, 2002).  

Background correction is based on probes with no 

corresponding mRNA target and the average of the lowest 5% 

expressed genes. Data normalization is based on iteratively 

correcting the raw data on non-regulated genes (fold-changes 

less than ±2). In a comparative study of Saccharomyces 

cerevisiae gene expression with three independent techniques 

(i.e., Affymetrix GeneChips, geniom one microarrays, and 

cDNA microarrays) it was previously shown that expression 

fold changes with values greater than ±1.5 are significant for 

the geniom one technology applied here (Baum et al., 2003). 

Thus, genes with fold changes between -1.5 and 1.5 can be 

considered to be non-regulated. In our study we extend the rule 

such that the upper or lower bound must be greater than ±2 for 

upregulated and downregulated genes, respectively. 

Furthermore, this rule must be fulfilled for all independent 

experiments. 

2.7. Data Filtering 

In order to investigate mRNA-degradation it is necessary 

that the probes are positioned along the whole length of the 

transcript. Therefore, only such genes were chosen which have 

a probe situated within the first and last 50 bases of their 

transcript. 199 genes of the 1107 measured probe sets satisfy 

this condition and were selected for subsequent analysis. 23 of 

these genes showed different probe rankings on different 

arrays and were therefore excluded from further analysis. 

There are many more effects other than mRNA-degradation 

that influence the measured probe-transcript hybridization 

strength, which are not yet fully understood (Rule et al., 2009). 

However, it is known that the GC-content of a probe 

influences the strength of the hybridization and thus the 

expression value. To account for this effect, all genes were 

removed whose expression profiles showed a high Pearson’s 

correlation (greater than 0.4) to the GC-contents of the probes. 

In this step, another 43 genes were excluded from further 

analysis. The expression values of the remaining 133 genes 

were logarithmized and then scaled to have mean zero and unit 

variance. The last step of data filtering included the removal of 

outliers. Outliers were defined as genes whose scaled 

expression profiles were dominated by a peak at a single 

probe. 46 genes with a Pearson’s correlation higher than 0.7 

with a single-peaked profile were removed.  
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After the filtering procedure, scaled probe profiles of 87 

genes remained and were used for further analysis. 

2.8 Clustering 

Two clustering methods were applied to the filtered data: a 

hierarchical clustering using the GeneCluster and TreeView 

software from M. Eisen (Eisen et al., 1998) and fuzzy k-means 

(see e.g.  Kruse et al., 1999), which we implemented in 

MATLAB. The average linkage method was chosen for 

hierarchical clustering, using the uncentered Pearson 

correlation as a similarity measure. Fuzzy k-means has been 

reported to be a useful method to uncover clusters in gene 

expression data (Gasch and Eisen, 2002). The fuzzy approach 

has several advantages over common hard clustering methods. 

It is able to detect overlapping clusters by assigning 

membership degrees to the genes. This means that every gene 

can belong to several clusters at different degrees. Another 

advantage is that by setting a membership cutoff, one can 

extract the genes which are most typical for a cluster. For the 

fuzzy k-means method we chose the number of clusters to be 

18 and a fuzzyfier value of 1.2. The distance measure used was 

the euclidean distance. 

3 Results and discussion 

3.1. Probe Set Ranking 

In order to test whether our data set is stable enough to 

provide an insight into mRNA-degradation, we tested if the 

ranking of the probes for each ORF was the same for all four 

independent hybridizations. Therefore, all ORF-specific probes 

were numbered according to their position from the 5’- to the 

3’-end. Then, the probe numbers were ordered by the 

expression level (Fig. 3). The resulting order was compared for 

all four independent hybridizations. 994 of all 1107 analyzed 

ORFs passed this test. Out of these, another 907 expression 

datasets were removed as described in 2.7. 

 
Fig. 3. Probe Set Ranking – Schematic outline for the method 

used to rank probe sets for each gene for all four DNA-

microarrays by their expression data. 89.8% probe sets showed 

the same ranking in all four individual hybridization reactions. 
3.2. Probe Position Dependent Expression Data 

As stated above, mRNA-degradation is mediated by the 

combined action of endo- and exoribonucleases. Up-to-now, 

mRNA-degradation from the 3’- to 5’-end or vice versa can be 

discriminated. Other processes like degradation from both ends 

simultaneously or any other patterns have not been described 

yet. Under the assumption that the majority of all transcripts 

are degraded by the same mechanism, all ORF-specific probe 

sets should yield similar expression patterns. This was 

analyzed by testing for all ORFs if the expression value of 

probe n-1 is smaller or larger than the expression value of 

probe n. The results are shown in a matrix in Fig. 4. The 

number of cases where an upstream probe shows a lower 

expression value are counted in the upper triangle and vice 

versa. 

 
Fig. 4. Probe Position Dependent Expression Data – For all genes 

with 10 unique probes the probes were ordered from the 5’- to 3’-

end (probes 1 to 0). The number of cases where an upstream 

probe shows a lower (upper triangle) or higher (lower triangle) 

expression value than the corresponding downstream probe are 

shown.  

If there was a common pattern from either side for the 

majority of the ORFs, one should observe a clear difference in 

the upper and the lower triangles. This is not the case, 

indicating that mRNA-degradation underlies no common 

mechanism in Nostoc PCC 7120. Fig. 5 shows a graphical 

representation of the data from Fig. 4. Here it becomes clear 

that mRNA-degradation underlies no common mechanism in 

Nostoc PCC 7120. 

 

Fig.5. Probe Position Dependent Expression Data – Graphical 

presentation of the data shown in Fig. 4. 

 3.3. Clustering 

3.3.1. Clusters with Identical Probe Patterns 

Initially, we extracted all probe sets that showed the same 

probe distribution patterns. We found four such clusters. 18 

members of these clusters are annotated tranposases whereas 2 

members are hypothetical proteins. Excluding the latter, all 

clusters can be explained by ORF sequence and consequently 

probe sequence similarity (Fig. 6).  

To our surprise, these transposases are expressed at a rather 

high level, with equal expression levels and profiles within 

each cluster (Fig. 7). Transposons, also known as jumping 

genes, can spread themselves in a genome by a kind of copy-

paste mechanism, catalyzed by a transposase enzyme for 

which they encode. If transposons copy themselves into a 

functional ORF or regulatory region, this gene commonly gets 

inactivated.  
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With our method we can discriminate four different 

transposon classes. Interestingly, each cluster is not only 

specified by a common probe pattern and similar sequences 

but also by similar expression values. 
 

 
Fig. 6. Sequence Distance Tree – This tree represents a protein sequence based distance tree of all sequences that are members of clusters 

with identical probe patterns. For the two hypothetical protein sequences the cluster membership is indicated. Numbers in parenthesis 

give the mean expression value of the members of the cluster.

 
Fig. 7. Gene Expression – Clusters with very similar probe patterns. Outliers are identified by their gene ID.
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3.3.2. Fuzzy K-Means 

The clusters produced by the fuzzy k-means clustering are 

depicted in (Fig.8). Together with the cluster identifier, the 

number of genes within each cluster is given. The membership 

cutoff was set to 70%. 

Clusters C5, C9, C14, and C16 show an increase of probe 

expression values from the 5’- to the 3’-end of the transcript. 

This corresponds to the assumption that a degradation 

mechanism is present which progresses from the 5’- to the 3’-

end. Cluster C17 shows an opposite pattern, with probe 

expression values decreasing towards the 3’-end. This suggests 

a second mechanism of degradation working from the 3’-end 

towards the 5’-end of the transcript. A detailed view of these 

potentially mRNA-degradation associated clusters is shown in 

Fig. 9.  

There are other clusters present, which show patterns that 

do not indicate a specific direction of degradation. It is 

therefore possible that degradation mechanisms other than the 

directional processes play a role in Nostoc PCC 7120 as well. 

However, these patterns are not very prominent in the data. 

There are two possible reasons for this. Firstly, genes that pass 

the filtering steps have relatively short transcripts. If 

degradation is a fast process, most transcripts will already be in 

a pretty degraded state and directional patterns will not be 

visible in the data. Secondly, effects other than degradation 

obscure the degradation signal in the data. Genes were filtered 

to have little correlation with the GC-contents of their probes, 

but other effects influencing the hybridization strength of the 

probe-target complex and their contribution to the expression 

patterns remain to be identified. 

 

Fig. 8. Resulting Clusters of Fuzzy K-Means Clustering – Clusters C5, C9, C14, and C16 hint at a degradation mechanism progressing 

from the 5’- to the 3’-end of the transcript. Cluster C17 points to a degradation process in the opposite direction.
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Fig. 9. Fuzzy K-Means Clustering – Detailed view of the clusters that are potentially associated with mRNA-degradation.

3.3.3. Hierarchical Clustering 

The results of the hierarchical clustering are depicted in Fig. 10. 

 

Fig. 10. Hierarchical Clustering – Clusters also found by fuzzy k-means are marked in blue. Pink markers indicate fuzzy k-means 

clusters that were split by the hierarchical method.
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Clusters from the fuzzy k-means clustering are marked. 

The hierarchical clustering reveals no dominant structures in 

the data. However, it shows some overlap with the clusters 

produced by fuzzy k-means. Some of the fuzzy clusters are 

also found by the hierarchical clustering, some are separated 

and some are not found. Generally speaking, the hierarchical 

clustering does not reveal much structure, which is not 

unexpected because all patterns in the data are rather subtle 

and probably overlayed by noise. 

4 Conclusion 

The goal of the work presented here was to identify 

different mRNA-degradation patterns from DNA-microarray 

based gene-expression data. We expected to see at least 4 

different degradation patterns: from 5’3’, 3’5’ and 

simultaneously from both ends resulting from exonucleases; 

and random patterns resulting from the action of 

endonucleases. Thus, the number of expected clusters when 

clustering all expression data was greater than 4 (transcripts 

showing no degradation where excluded from data analysis). 

Since gene-expression data are very noisy, we increased the 

number of expected clusters to 18 for fuzzy k-means 

clustering.  

To our surprise, we did not see a big difference between 

hierarchical and fuzzy k-means clustering (see Fig.10). Thus, 

we restrict ourselves to hierarchical clustering because it does 

not require specification of the number of expected clusters.  

Detailed analysis of our clustering results suggest that 

several different mRNA-degradation pathways work in 

concert. Furthermore, we conclude that at least some of the 

pathways are transcript specific. This requires the recognition 

of the transcript by components of the degradation machinery. 

Consequently, we initiated a search for common sequence and 

structure patterns in each individual cluster. 
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Abstract: Increasing size and number of biochemical network models facilitates iterative way of model building. In parallel 

comparison of models become more important to find out the similarity of models, agreement between models and other features. 

Comparison of models would be convenient if all the model builders would use the same formats and names to describe the 

network. The reality is that models can be described in different formats (SBML, COBRA and others). The formulas of metabolites 

are not always indicated. IDs and names of metabolites are different even for the same metabolite. 

A model comparison algorithm for SBML and COBRA format models is developed to match the same metabolites of different 

models which is precondition for correct matching of reactions. 

The algorithm is based on comparison of metabolite names as text strings. Automatic three level filtering approach is implemented 

in the software ModeRator to reject pairs of potentially equal metabolites and build opinion about metabolite pairs which have 

high similarity in metabolite names. Results of automatic mapping were inspected with manual curation. 

Automatic metabolite mapping of two E.coli models (1314 and 1704 metabolites) comparing only identifiers revealed high number 

of matching metabolites. Since both models are coming from the same source (BioCyc database)   no significant difference between 

automatic mapping and manual curation was observed. 

In case of two S.cerevisiae models (679 and 1061 metabolites) three level filtration by metabolite name is used. Manual curation of 

automatic comparison results revealed 7% discrepancy. 

 

Keywords: Biochemical networks, reconstruction, models, metabolite mapping, pairwise comparison.

 

1 Introduction 

The function of cells is based on complex networks of 

interacting chemical reactions carefully organized in space and 

time. These biochemical reaction networks produce observable 

cellular functions (Palsson, 2006). Reconstruction of 

biochemical network is an assembly of the components and 

their interconversions for an organism, based on the genome 

annotation and the bibliome (Lewis et al., 2009). 

Reconstruction based models can be used for the analysis of 

network capabilities, prediction of cellular phenotypes and in 

silico hypothesis generation (Lewis et al., 2009). 

The first fully sequenced genome was that of H.influenzae 

in 1995 (Fleischmann et al., 1995), which enabled the first 

reconstruction of a genome-scale metabolic network in 1999 

(Edwards and Palsson, 1999). With the sequencing of 

complete genomes, it is now possible to reconstruct the 

network of biochemical reactions in many organisms. Several 

of these networks are available online: Kyoto Encyclopedia of 

Genes and Genomes (KEGG) (Kanehisa and Goto, 2000; 

Kanehisa et al., 2011), EcoCyc (Keseler et al., 2011), BioCyc 

(Karp et al., 2005; Karp et al., 2010) and metaTIGER 

(Whitaker et al., 2009). 

A potential strategy to obtain large cell models is to 

construct them “bottom-up” from smaller modules that can be 

fitted and understood more easily (Schulz et al., 2006). 

Bottom-up metabolic network reconstructions have been 

developed over the last 10 years. These reconstructions 

represent structured knowledge bases that abstract pertinent 

information on the biochemical transformations taking place 

within specific target organisms (Thiele and Palsson, 2010). 

The reconstruction process for metabolic networks has been 

developed (Schellenberger et al., 2011) and implemented for a 

number of different organisms (Palsson, 2006; Schellenberger 

et al., 2010) including human (Duarte et al., 2007). The 

available reconstructions and models are growing both in 

number and size (number of interactions within reconstruction 

or model). Still reconstructions differ in quality and coverage 

that may minimize their predictive potential and use as 

knowledge bases (Thiele and Palsson, 2010). The process of 

reconstruction is iterative. Unlike genome sequencing projects 

which have a well-defined end point, the reconstructions 

process is ongoing (Palsson, 2006). Thus it is important to 

compare, intersect and unit the existing reconstructions of the 

same or even different organisms to find out their quality, 

consistency and suitability for given task. Manual comparison 

becomes inefficient especially in case of genome-scale 

reconstructions with thousands of involved reactions and 

metabolites. 

Genome-size reconstructions are available in different 

formats. Mostly they are in form of 1) plain text files, 2) 

SBML (Systems Biology Markup Language (Hucka et al., 
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2003)) file format and 3) spreadsheets (including COBRA 

format (Schellenberger et al., 2011)). 

Due to different formats of models and different 

approaches to standardization of substances and reactions the 

comparison of reconstructions and models is complicated. It is 

possible to compare structures of models visually (Boele et al., 

2012; Kostromins and Stalidzans, 2012; Schellenberger et al., 

2010) or parameters of the structure (Rubina and Stalidzans, 

2010; Yamada and Bork, 2009). Still that is not enough to 

compare the scope of models or join the models as equal 

metabolites and reactions have to be recognized for that 

purpose. 

Consequently, the need for analysis, comparison, merge, 

union and intersection of biomodels is growing. In systems 

biology the need to compare models or to couple them as parts 

of larger models has been noted by Radulescu (Radulescu et 

al., 2008). Also the demand for a method to relate different 

models has been pointed out by Gay (Gay et al., 2010). 

Although we didn't find a dedicated software tool (except 

for ModeRator (Mednis et al., 2012)) for comparison of 

models, there are several software tools with functionality that 

is more or less related to comparison of models. These include: 

Tools-4-Metatool (Xavier et al., 2011), Compare Subsystems 

(Oberhardt et al., 2011), SemanticSBML (Krause et al., 2010), 

COBRA (Becker et al., 2007), FAME (Boele et al., 2012) and 

MetRxn (Kumar et al., 2012). 

The comparison of models starts at the comparison of 

metabolites. Chemical formulas (if available) and names (if 

available) of metabolites are the main features that can be 

compared. An algorithm for metabolite comparison analysing 

the similarity of chemical formula and name of metabolites is 

proposed. In case of identical formula and name the 

metabolites are considered to be identical automatically. In 

other cases the similarity rate is calculated and manual curation 

is needed for metabolites with the similarity above chosen 

threshold. The algorithm is tested comparing in pairs two 

models (or reconstructions) of E.coli and two of yeast (or 

S.cerevisiae). 

2 Materials and methods 

2.1. Comparison criteria 

In order to compare two reactions, one has to compare the 

involved metabolites and thereby decide if two given reactions 

are equal. This means that before comparing reactions, one has 

to compare and map metabolites between both reconstructions. 

The mapping of metabolites means explicitly defining that 

metabolite “abc” from one reconstruction is the same as 

metabolite “xyz” from other reconstruction. Technically it can 

be achieved by assigning the same ID to two metabolites that 

are believed to be the same. 

In a case that two reconstructions demanding a comparison 

come from different sources or authors, it is very likely that the 

elements in both reconstructions will not share common 

identifiers. In other words, elements, like compartments, 

metabolites and reactions will have different IDs. In SBML 

files there is unique id value for each element, but in COBRA 

models abbreviations serve as unique identifiers. 

The problem is to evaluate and decide if two elements with 

different IDs are the same or not. If the IDs can not be used for 

identifying an element, some other property must be used. For 

metabolites such property could be a chemical formula. 

Chemical formulas in clear text (such as H2O) usually can be 

found in COBRA models where chemical formulas are 

mandatory data that enables some of the core functionality of 

COBRA toolbox. However, chemical formulas in SBML files 

are not a common practice. Even more -- the data model of 

SBML does not support chemical formulas in clear text. 

Chemical formulas as identifiers for metabolites cannot be 

used for one more reason -- the presence of isomers. The 

notation of chemical formula shows number of atoms in a 

molecule, and the same atoms with the same count but with 

different spatial structure are noted the same. Well known 

examples of isomers are glucose and fructose. 

Other option is to compare elements, e. g. metabolites by 

names. Since the terminology is not yet standardized, it is very 

unlikely that different authors will name elements absolutely 

identically. Therefore a fuzzy string comparison algorithm can 

be used. Such an algorithm calculate similarity of two given 

text strings - metabolite names in our case. 

Various implementations for calculating similarity ratio 

between two text strings are available.  

A ratio usually is floating point number ranging from 0.0 

to 1.0 indicating similarity of two given sequences (or strings). 

The ratio “0” means that two strings have nothing in common. 

For example such strings would be “ABCD” and “EFGH”. 

These particular strings do not share a single common 

character. The ratio “1.0” means that two given strings are 

absolutely identical. The closer to 1.0, the more similar two 

given strings are. 

The distance between two strings is the number of steps 

needed to transform string A into string B. The distance 

sometimes is also called edit distance. For example the 

distance between “abcd” and “aZcZ” is 2. That's because there 

are only two edits needed to change “abcd” into “aZcZ” -- two 

replace operations. 

The threshold is a measurable value that serves the 

purpose of filtering elements by a value of its property. For 

instance, threshold of 5, means that any value that is below (or 

above) 5 is filtered and not passed further in the algorithm. The 

threshold of string similarity ratio (and/or distance) means that 

all pairs of strings that are not similar enough, is filtered out. 

The Table 1 shows examples of ratios and distances for 

different string pairs. Given examples show an interesting 

trend: string length have an impact on ratio. On longer strings 

the impact is smaller, but on shorter strings the impact is 

higher. 

The authors of SBMLmerge sowtware (Schulz et al., 

2006) are using only ratio (Ratcliff and Metzener, 1988) 

without taking into account edit distance to map metabolite 

names. As it is shown on Table 1 this approach works well 

only with long metabolite names. In order to find two similar 

names that are short in length, the threshold of ratio need to be 

lowered. However, lowering the threshold involves the higher 

risk false positives to be found. It means that on low threshold 

two names can be reported as similar, but actually they are two 

different metabolites, like “D-glutamate” and “L-glutamate”. 
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Table 1 
Example of Levenshtein ratio and edit distance variations for different strings 

String A String B Ratio Distance 

Bicarbonate bicarbonate 0.9 1 

Glucose-6-phosphate Glucose six phosphate 0.8 5 

Glucose-6-phosphate Glucose-six-phosphate 0.9 3 

L-tryptophanyl-tRNAtrp L-Tryptophanyl-tRNA(trp) 0.86 4 

L-lysine L-Lysine 0.87 1 

D-glutamate L-Glutamate 0.81 2 

abcd aZcZ 0.5 2 

2.2. Three level filtering 

 The comparison of metabolite names of large models can 

relate several metabolites of model M1 to one metabolite of 

model M2. The second level filters out multiple links to the 

model M1 (see Fig. 1). The third level filters out multiple links 

to the model M2. During first level filtering the strength of a 

link between all possible metabolite pairs between model M1 

and M2 is calculated. During the third level filtering the 

relations “many to one” are compared and the pair with the 

highest similarity is nominated as pair of mapped metabolites. 

Fig. 1. Schematic example of three level filtering approach. 

Metabolites of model M1 are marked by letters and metabolites of 

model M2 are marked by numbers. Name similarity ratio 

(strength of links) is measured in percents. 

The above mentioned approach is implemented the most 

recent (2.5.4) version of ModeRator - previously published 

software tool for model comparison (Mednis et al., 2012). 

Two pairs of models were compared: Escherichia coli 

models “ecol199310cyc” and “ecol316407cyc” from BioCyc 

database (http://www.biocyc.org/) and Saccharomyces 

cerevisiae models iND750 developed by Natalie Duarte 

(Duarte et al., 2004) and iLL672 developed by Lars Kuepfer 

(Kuepfer et al., 2005). 

3 Results and discussion 

3.1. Comparison of E.coli models 

E.coli models contain 1314 and 1704 metabolites (see the 

supplementary file “ecoli_metabolites”). Metabolites in both 

E.coli models were compared by identifiers, therefore filtering 

of multiple links was not applicable. Since E.coli models came 

from the same source, we expected to find equal annotation for 

same metabolites.  

Automatic comparison using ModeRator revealed 1094 

common metabolites with matching identifiers. Interestingly, 

that not all metabolite pairs with matching IDs were having 

equal annotation, particularly metabolite name and chemical 

formula. 31 of 1090 metabolites pairs were having different 

names. 30 pairs were having different chemical formula. For 

391 metabolite pair it was not possible to compare chemical 

formulas, because one or both formulas were missing.  

Manual curation of the above mentioned 31 pairs with 

non equal names was performed using databases (Ecocyc 

(Keseler et al., 2011), Metacyc (Caspi et al., 2012), and E. coli 

Metabolome database (Guo et al., 2012)). 30 metabolite pairs 

were approved during manual curation. One pair was left 

without decision. 

3.2. Comparison of S.cerevisiae models 

The reconstruction of Yeast metabolism iLL672 (Kuepfer 

et al., 2005) is based on a previous reconstuction iFF708 

(Förster et al., 2003). iFF708 covered two main compartments, 

cytosol and mitochondria. Metabolites located in the 

mitochondria for a specific reaction terminate with an 

additional „m“ (Förster et al., 2003). This differentiation 

between cytosolic and mitochondrial metabolites persists in 

iLL672 (Kuepfer et al., 2005). Metabolite localisation was 

ignored during manual comparisson (strings were matched 

ignoring the terminal „M“). The compared Saccharomyces 

cerevisiae models contain 679 and 1061 metabolites. 

Automatic comparison by identifiers revealed only one 

metabolite - “Acyl-carrier protein”, so we had to compare 

metabolites by names. From total of 447 returned results 

(pairs), 248 pairs with identical metabolite names (ratio 100%) 

were automatically approved. 199 pairs were with non 100% 

ratio match. During third level filtering 152 of them were 

automatically approved (considered as mapped metabolites 
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being equal) and 47 automatically disapproved (considered as 

being different metabolites). 

Only Names of the metabolites were used for manual 

curation. For the manual comparisson of iLL672 and iND750 

BIGG database (Schellenberger et al., 2010) was used. It 

captures detailed information about iND750 metabolites. 

Using this recource, many metabolite matches could be either 

confirmed or verified. In case the match could not be resolved 

we additionally queried the Yeast metabolome database 

(YMDB, http://www.ymdb.ca/(Jewison et al., 2012)). Using 

synonyms listed in YMDB, we again queried BIGG database 

and derived a number of alternative matches of iLL672 

metabolites to iND750 metabolites (alternative matches 

provided in column „Comments” in supplementary file 

“yeast_metabolites”). 

In case a typing error was likely, match was confirmed and 

a note was made in column „Comments” (See supplementary 

materials file “yeast_metabolites”). 

Thresholds for name similarity ratio and edit distance were 

chosen low enough to minimize cases false negatives when 

two identical metabolites with not-so-identical names are 

filtered from results. The threshold for similarity ratio was 

68% and the threshold for edit distance was 15 edits. 

199 pairs with non 100% match (68 <= ratio (%) < 100) 

were curated. The decision of manual curation was: 133 

decisions are the same as in automatic comparison, 64 are 

different and in two cases decision could not be made based on 

information in databases.  

Many differences  were found through excluding or 

including of „'“ ,“–„ or „spaces“, and terms of stereoisomerism 

into metabolite names. 

 

Table 2 

Manual curation vs. automatic comparison. „Disagree on SAME“ means that manual curation decision is „SAME“, but 

ModeRator decides otherwise. 

Manual curation vs. automatic comparison Cases Comment 

Identical names 250 Manual curation was not necessary 

Agree on decision „SAME metabolites” 124 Manual and automatic curation decide that metabolites are the same 

Agree on DIFFERENT 42 Manual and automatic curation decide that metabolites are different 

Disagree on SAME 9 Manual curation decides that metabolites are the same 

Disagree on DIFFERENT 22 Manual curation decides that metabolites are different 

   

4 Conclusion 

Different formats and description standards of models as 

well as charged/uncharged formulas and different names and 

abbreviations of metabolites make comparison of 

reconstructions and models a complicated task. 

In the software ModeRator implemented three level 

filtering approach can perform automatic metabolite matching 

as part of model comparison task. The three level filtering can 

be used as decision support system that processes the raw data 

to save time of manual curator. The algorithm can find 

identical metabolites which are declared as mapped 

metabolites without manual curation. The algorithm also 

filtrates away metabolite pairs with low similarity (levels of 

similarity thresholds can be adjusted) thus saving time of 

manual curation. Thus only third group of metabolite pairs 

with high similarity remains to be curated manually. 

The two demonstrated application cases (pair of E.coli and 

pair of S.cerevisiae reconstructions) demonstrate that the 

success rate strongly depends on similarity of metabolite 

description approach used by model builders. In case of 

models built by the same scientific group automatic metabolite 

matching demonstrates very good performance and manual 

curation may be needed just for few metabolites. 

Acknowledgments 

This work is funded by a project of European Structural 

Fund Nr. 2009/0207/1DP/1.1.1.2.0/09/APIA/VIAA/128 

“Latvian Interdisciplinary Interuniversity Scientific Group of 

Systems Biology” www.sysbio.lv. 

References 

Becker, S. a, Feist, A. M., Mo, M. L., Hannum, G., Palsson, B. Ø., and 
Herrgard, M. J. (2007). Quantitative prediction of cellular metabolism 

with constraint-based models: the COBRA Toolbox. Nature protocols, 

2(3), 727–38. doi:10.1038/nprot.2007.99 

Boele, J., Olivier, B. G., and Teusink, B. (2012). FAME, the Flux Analysis and 

Modeling Environment. BMC systems biology, 6(1), 8. doi:10.1186/1752-
0509-6-8 

Caspi, R., Altman, T., Dreher, K., Fulcher, C. a, Subhraveti, P., Keseler, I. M., 

Kothari, A., et al. (2012). The MetaCyc database of metabolic pathways 
and enzymes and the BioCyc collection of pathway/genome databases. 

Nucleic acids research, 40(Database issue), D742–53. 

doi:10.1093/nar/gkr1014 
Duarte, N. C., Becker, S. a, Jamshidi, N., Thiele, I., Mo, M. L., Vo, T. D., 

Srivas, R., et al. (2007). Global reconstruction of the human metabolic 

network based on genomic and bibliomic data. Proceedings of the 
National Academy of Sciences of the United States of America, 104(6), 

1777–82. doi:10.1073/pnas.0610772104 

Duarte, N. C., Herrgård, M. J., and Palsson, B. Ø. (2004). Reconstruction and 
validation of Saccharomyces cerevisiae iND750, a fully 

compartmentalized genome-scale metabolic model. Genome research, 
14(7), 1298–309. doi:10.1101/gr.2250904 

Edwards, J. S., and Palsson, B. O. (1999). Systems properties of the 

Haemophilus influenzae Rd metabolic genotype. The Journal of 
Biological Chemistry, 274(25), 17410–17416. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/10364169 

Finney, A., and Hucka, M. (2003). Systems biology markup language: Level 2 
and beyond. Biochemical Society Transactions, 31(Pt 6), 1472–1473. 

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14641091 

Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., 
Kerlavage, A. R., Bult, C. J., et al. (1995). Whole-genome random 

sequencing and assembly of Haemophilus influenzae Rd. Science, 

269(5223), 496–512. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/7542800 

Förster, J., Famili, I., Fu, P., Palsson, B. Ø., and Nielsen, J. (2003). Genome-

scale reconstruction of the Saccharomyces cerevisiae metabolic network. 
Genome research, 13(2), 244–53. doi:10.1101/gr.234503 

Gay, S., Soliman, S., and Fages, F. (2010). A graphical method for reducing 

and relating models in systems biology. Bioinformatics, 26(18), i575–
i581. Retrieved from 

http://www.bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformat

ics/btq388 
Guo, a. C., Jewison, T., Wilson, M., Liu, Y., Knox, C., Djoumbou, Y., Lo, P., et 

al. (2012). ECMDB: The E. coli Metabolome Database. Nucleic Acids 

Research, (10), 1–6. doi:10.1093/nar/gks992 
Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., 

Arkin, a. P., et al. (2003). The systems biology markup language (SBML): 

a medium for representation and exchange of biochemical network 

http://www.ymdb.ca/


M.Mednis and M.Aurich 

www.bit-journal.eu  18 

models. Bioinformatics, 19(4), 524–531. 

doi:10.1093/bioinformatics/btg015 

Jewison, T., Knox, C., Neveu, V., Djoumbou, Y., Guo, A. C., Lee, J., Liu, P., et 

al. (2012). YMDB: the Yeast Metabolome Database. Nucleic acids 

research, 40(Database issue), D815–20. doi:10.1093/nar/gkr916 
Kanehisa, M., and Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and 

Genomes. Nucleic Acids Research, 28(1), 27–30. Retrieved from 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=102409&tool=
pmcentrez&rendertype=abstract 

Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M. (2011). 

KEGG for integration and interpretation of large-scale molecular data sets. 
Nucleic Acids Research, 40(Database issue), D109–14. 

doi:10.1093/nar/gkr988 

Karp, P. D., Ouzounis, C. a, Moore-Kochlacs, C., Goldovsky, L., Kaipa, P., 
Ahrén, D., Tsoka, S., et al. (2005). Expansion of the BioCyc collection of 

pathway/genome databases to 160 genomes. Nucleic acids research, 

33(19), 6083–6089. doi:10.1093/nar/gki892 
Karp, P. D., Paley, S. M., Krummenacker, M., Latendresse, M., Dale, J. M., 

Lee, T. J., Kaipa, P., et al. (2010). Pathway Tools version 13.0: integrated 

software for pathway/genome informatics and systems biology. Briefings 
in bioinformatics, 11(1), 40–79. doi:10.1093/bib/bbp043 

Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-

Castro, S., Muñiz-Rascado, L., Bonavides-Martinez, C., et al. (2011). 
EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic 

acids research, 39(Database issue), D583–90. doi:10.1093/nar/gkq1143 

Kostromins, A., and Stalidzans, E. (2012). Paint4Net: COBRA Toolbox 
extension for visualization of stoichiometric models of metabolism. 

Biosystems. doi:10.1016/j.biosystems.2012.03.002. 

Krause, F., Uhlendorf, J., Lubitz, T., Schulz, M., Klipp, E., and Liebermeister, 
W. (2010). Annotation and merging of SBML models with 

semanticSBML. Bioinformatics (Oxford, England), 26(3), 421–2. 

doi:10.1093/bioinformatics/btp642 
Kuepfer, L., Sauer, U., and Blank, L. M. (2005). Metabolic functions of 

duplicate genes in Saccharomyces cerevisiae. Genome research, 15(10), 

1421–30. doi:10.1101/gr.3992505 
Kumar, A., Suthers, P. F., and Maranas, C. D. (2012). MetRxn: a 

knowledgebase of metabolites and reactions spanning metabolic models 

and databases. BMC bioinformatics, 13(1), 6. doi:10.1186/1471-2105-13-
6 

Lewis, N. E., Jamshidi, N., Thiele, I., and Palsson, B. Ø. (2009). Metabolic 

systems biology: a constraint-based approach. In R. Meyers (Ed.), 

Encyclopedia of Complexity and Systems Science (p. 5535). New York: 

Springer. 

Mednis, M., Rove, Z., and Galvanauskas, V. (2012). ModeRator - a software 
tool for comparison of stoichiometric models. 7th IEEE International 

Symposium on Applied Computational Intelligence and Informatics (pp. 

97–100). 
Oberhardt, M. A., Puchałka, J., Martins Dos Santos, V. A. P., and Papin, J. A. 

(2011). Reconciliation of Genome-Scale Metabolic Reconstructions for 

Comparative Systems Analysis. (P. E. Bourne, Ed.)PLoS Computational 
Biology, 7(3), 18. Retrieved from 

http://dx.plos.org/10.1371/journal.pcbi.1001116 
Palsson, B. Ø. (2006). Systems Biology: Properties of reconstructed networks. 

Cambridge University Press. 

Radulescu, O., Gorban, A. N., Zinovyev, A., and Lilienbaum, A. (2008). 
Robust simplifications of multiscale biochemical networks. BMC systems 

biology, 2(1), 86. Retrieved from 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2654786&tool
=pmcentrez&rendertype=abstract 

Ratcliff, J. W., and Metzener, D. (1988). Pattern Matching: The Gestalt 

Approach. Dr Dobbs Journal, (July), 46. 
Rubina, T., and Stalidzans, E. (2010). Topological features and parameters of 

Biochemical Network Structures. International Industrial Simulation 

Conference (pp. 228–236). Budapest: EUROSIS. 
Schellenberger, J., Park, J. O., Conrad, T. M., and Palsson, B. Ø. (2010). 

BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale 

metabolic reconstructions. BMC bioinformatics, 11, 213. 
doi:10.1186/1471-2105-11-213 

Schellenberger, J., Que, R., Fleming, R. M. T., Thiele, I., Orth, J. D., Feist, A. 

M., Zielinski, D. C., et al. (2011). Quantitative prediction of cellular 
metabolism with constraint-based models: the COBRA Toolbox v2.0. 

Nature Protocols, 6(9), 1290–1307. doi:10.1038/nprot.2011.308 

Schulz, M., Uhlendorf, J., Klipp, E., and Liebermeister, W. (2006). 
SBMLmerge, a system for combining biochemical network models. 

Genome informatics International Conference on Genome Informatics, 

17(1), 62–71. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/17503356 

Thiele, I., and Palsson, B. Ø. (2010). A protocol for generating a high-quality 

genome-scale metabolic reconstruction. Nature protocols, 5(1), 93–121. 

doi:10.1038/nprot.2009.203 

Whitaker, J. W., Letunic, I., McConkey, G. A., and Westhead, D. R. (2009). 

metaTIGER: a metabolic evolution resource. Nucleic Acids Research, 
37(Database issue), D531–D538. Retrieved from 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2686446&tool

=pmcentrez&rendertype=abstract 
Xavier, D., Vázquez, S., Higuera, C., Morán, F., and Montero, F. (2011). 

Tools-4-Metatool (T4M): Online suite of web-tools to process 

stoichiometric network analysis data from METATOOL. Biosystems, 1–4. 
doi:10.1016/j.biosystems.2011.04.004 

Yamada, T., and Bork, P. (2009). Evolution of biomolecular networks: lessons 

from metabolic and protein interactions. Nature reviews. Molecular cell 
biology, 10(11), 791–803. doi:10.1038/nrm2787 



Biosystems and Information Technology (2012) Vol.1(1) 19-24 
DOI █ █.█ █ █ █ /█ █ █ █ █ █ -█ █ █ -█ █ █ █ -█ 

ISSN 2255-8004  19 
www.bit-journal.eu 

 

Individual tree identification using different LIDAR and optical 

imagery data processing methods 

Ingus Smits
1,2*

, Gints Prieditis
2
, Salvis Dagis

1,2
, Dagnis Dubrovskis

1 

 
1
Precision Forestry Research Group, Forest faculty, Latvia University of Agriculture, Akademijas iela 11, LV3001, Jelgava, Latvia 

2
Faculty of Information Technologies, Latvia University of Agriculture, Liela iela 2, LV3001, Jelgava, Latvia 

*Corresponding author 

Ingus.smits@gmail.com 
 
Received: 25 November 2012; accepted: 28 November 2012; published online: 29 November 2012. 
This paper has no supplementary material. 
 

 

Abstract: The most important part in forest inventory based on remote sensing data is individual tree identification, because only 

when the tree is identified, we can try to determine its characteristic features. The objective of research is to explore remote 

sensing methods to determine individual tree position using LIDAR and digital aerial photography in Latvian forest conditions. 

The study site is a forest in the middle of Latvia at Jelgava district (56º39’ N, 23º47’ E). Aerial photography camera (ADS 40) and 

laser scanner (ALS 50 II) were used to capture the data. A LIDAR data is 1.4 to 9 p/m2 depending on the altitude. Image data is 

RGB (Red, Green, and Blue), NIR (Near Infrared) and PAN (Panchromatic) spectrum with 20 to 50 cm pixel resolution depending 

on the altitude. Image processing was made using Fourier transform and RGB colour segmentation. LIDAR data processing 

methods were DBSCAN algorithm, global maximum algorithm, and local maximum algorithm. Field measurements were tree 

coordinates, species, height, diameter at breast height, crown width, and length.  

Best results on both ALS and ADS data were achieved using local maximum methods. 

 

Keywords: Forest inventory, tree identification, laser scanning, aerial photography, data fusion.

 

1. Introduction 

The most responsible and important part in forest inventory 

based on remote sensing data is individual tree identification, 

because only when the tree is identified, we can try to 

determine its characteristic features, like tree species, tree 

height, diameter at breast height, volume, and biomass (Secord 

et al., 2006; Edson and Wing, 2011).  

In the studies of forest inventory using remote sensing 

sensors, one of the main problems that the authors mentioned 

is tree identification and tree location accurate determination 

(Hyyppä et al., 2008; Kane et al., 2010), especially in Middle 

Europe (Diedershagen et al., 2006), since there is a mixture of 

different deciduous and coniferous trees. As a result, the 

identification is more difficult. Many authors in their 

conclusions highlight that the usage of LIDAR and airphoto 

methods to determine forest inventory parameters will never 

be one hundred per cent correct (Onge et al., 2004; Rombouts, 

2006), especially applying automated tracking methods 

(Hyyppä et al., 2004; Junttila et al., 2010). Practically for all 

researchers, so far it has been difficult to identify small trees 

(Pitkänen, 2001; Pouliot and King, 2005) and closely growing 

trees (Pouliot and King, 2005; Koch et al., 2006), as well as 

high density hardwood stands with homogeneous crown (Koch 

et al., 2006; Rahman and Gorte, 2008). Automated tree 

identification and tree location accurate determination are still 

problematic (Popescu et al., 2002; Junttila et al., 2010), even in 

cases where access to different types of data (Vauhkonen et al., 

2008) is available. This is mainly by the fact that trees vary in 

crown size (Tokola et al., 2008), shape and optical properties 

(Tokola et al., 2008; Vauhkonen et al., 2008). For example, 

some species have rounded crowns, some have cone-shaped 

crowns, and some have star-shaped crowns. Tone in aerial 

photographs depends on many factors, and relative tones on a 

single photograph, or a strip of photographs may be of a great 

value in delineating adjacent trees of different species (Koch et 

al., 2006). Crowns are often interlaced. Occlusion and shading 

are present and result in omission errors. These factors affect 

the treetop positioning and make the identification of trees 

difficult.  

Numbers of different methods are used to identify a single 

tree. The main criterion for choice of identification method is 

the specific structure of forest canopy and species diversity. If 

the area of construction is more complicated, tree locations and 

their exact coordinates are difficult to determine. Single-scale 

template matching has been successfully applied in 2D and 3D 

treetop estimation of regular stands, where crowns show only 

moderate variation (Korpela, 2006). In contrast, to determine 

all the treetops where forest foliage is complex in structure and 

with a large variation, the most appropriate are the automatic 

and semi-automatic methods (Korpela et al., 2007). 

Pitkanen developed several methods for individual tree 

detection based on canopy height model of Airborne LIDAR. 

In one of them, he used a Gaussian filter to determine 

equalized height of pixel and local maxima on the smoothed 

Canopy Height Model were considered as tree locations. In the 

other method, large numbers of possible tree locations were 

selected based on local maxima. The pixels were reduced 

based on the slope within the assumed crown centre area and 

based on the distance and valley depth between a location and 

its neighbouring locations. The second method used crown 

width and tree height model as a parameter to adapt with tree 
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size. Both methods showed that about 60- 70% of the 

dominant trees were found (Pitkanen et al., 2004).  

Heinzel used local maximum of smoothed canopy height 

model and delineation of single tree is done using pouring 

algorithm. It was observed that the segmented trees still 

contained a lot of wrong segments, in which the regions are 

too small to be a tree, inappropriate crown shape, and crown 

regions that cover another trees and canopy gaps. The 

segments were refined based on their shapes and distance 

between tree tops (Heinzel et al., 2008).  

Data collection and processing methods at different 

conditions work differently, mainly due to forest density, 

represented tree species and forest diversity in growing 

conditions, as well as LIDAR and digital aerial cameras 

technology specifics.  

The objective of research is to explore methods to 

determine single tree position using LIDAR and digital aerial 

photography in Latvian forest conditions.  

2. Materials and methods 

The study site is a forest in the middle of Latvia in Jelgava 

district (56º39’ N, 23º47’ E). The area consists of mixed 

coniferous and deciduous forest with different age, high 

density, complex structure, various components, and 

composition. Represented species are pine (Pinus sylvestris 

L.), spruce (Picea abies (L.) H.Karst), birch (Betula pendula 

Roth), and aspen (Populus tremula L.).  

 Data were obtained using a specialized aircraft Pilatus PC-

6, which is equipped with a positioning and Geomatics 

technology company Leica Geosystems equipment - a large 

format digital aerial photography camera (ADS 40) and laser 

scanner (ALS 50 II). The study area was flown over by plane 

and scanned at three different altitudes. A LIDAR digital 

terrain models (DTM) were estimated from leaf-on data from 

May, 2010 having 9 p/m2 at 500 m altitude; 3.7 p/m2 at 1000 

m altitude; 1.4 p/m2 at 1500 m altitude.  

The image data is RGB (Red, Green, and Blue), NIR (Near 

Infrared) and PAN (Panchromatic) spectrum with 20 cm pixel 

resolution at 500 m altitude; 30 cm pixel resolution at 1000 m 

altitude; 50 cm pixel resolution at 1500 m altitude. 

In the study area, 10 sample plots were selected to analyze 

accuracy of different tree identification methods and to 

determine impact of the resulting ALS and ADS data 

structures on the number of trees identified. Plots were chosen 

to be simple by the structure with small proportion of the tree 

on the second floor. 

In order to determine the best method ALS data with 9 

p/m2 and ADS data with a pixel size of 20 cm in the field were 

used. 

It should be noted that the choice of methods was based 

only on the number of trees identified in all the plots together, 

without analyzing them over the tree species or forest floors or 

other woodwork characterizing parameters. 

All trees with a diameter at breast height DBH of more 

than 5 cm were measured and for each tree coordinates, its 

species, height, DBH, crown width and length were recorded. 

Altogether there were 252 trees in the data. Circular sample 

plots were established with dimensions of 0.045 ha.  

Differentially corrected Global Positioning System 

measurements were used to determine the position of each plot 

centre. The accuracy of the positioning was approximately 1 

meter. 

2.1. LIDAR data processing methods 
Three different methods for tree identification were 

evaluated. First method is based on reflection point count in a 

certain height range. It was made by adopting density based 

clustering algorithm (DBSCAN) (Sriperumbudur and 

Steinwart, 2012; Meng, 2010), which was accompanied by 

restrictions on the radius determination. Realization of the 

method is based on the number of points above a certain height 

level (Fig. 1.). 

Select a point from  dataset

Set min. point count and distance eps.

Adds to cluster

Checks if it is core point 
(has a min. point count in distance eps.

Check if it is density reachable from existing clusters

Creates  new cluster

[Yes] 

[No] 

[Yes] 

[No] 

 
Fig. 1. DBSCAN algorithm (Sriperumbudur and Steinwart, 2012; 

Meng, 2010)  

In the literature, several researchers state that this method 

gives good results (Meng, 2010; Sriperumbudur and Steinwart, 

2012). 

The second method used for processing of LIDAR data set 

is global maximum method (Fig. 2.) that uses height data and 

range limitations. This method worked poorly. First, the 

LIDAR data set points were read, and then divided into 

quadrants. Afterwards cluster formed by the maximum points 

in the upper layer was found, and deleted from the cube. In this 

way, part of points belonging to other trees was lost, and trees 

were omitted. 

The third method used was searching for local maximums 

on height axis of LIDAR data collection. Use of this method is 

based on the assumption that tree top centre is highest point in 

data set which is not always the case. This method is used on 

LIDAR data that are smoothed by using Gaussian mask. As 

closest point of such mask has bigger affect than the ones on 

the border. It can be stated that this filter evaluates between 

point interactions. After calculating the Gaussian mask the 

highest segment points above the surface were searched and 

compared with adjacent cells independently each segment. If 

the selected cell is higher than the adjacent - then there is the 

tree top. Tree top is not always the centre of the cell, so the 

tree is found in the centre of determining the highest cell. Tree 

recognition algorithm is shown in figure (Fig. 3.) 
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Fig. 2. Global maximum algorithm

The described local maximum approach is one of the most 

widely used methods of tree identification, and determination 

of the crown canopy tree height determination (Pikanen et al., 

2004; Popescu, 2003; Korpela, 2006; Korpela, 2007). 

Select a segment of data from the database

Splits segment into quadrants

[segment has unchecked quadrants] [all quadrants checked] 

Compares neighbouring quadrants

Uses Gussian filter to  smooth out the quadrants

Saves coordinates of  highest point 
in quadrant as a tree centre

[is higher than all neighbors] 

Filters surrounding points
 that belongs to the tree

[not the higest] 

 
Fig. 3. Local maximum algorithm 

In the course of evaluating the capability of identifying 

trees using ALS data, all three methods were examined, and 

for future use on the local maximum approach and the 

Gaussian filter were chosen as these approaches showed the 

best result in practical sample plot tests. 

2.2. Image processing methods 
RGB colour segmentation is one of the most commonly 

used image processing methods (Crosilla, et al., 2005), and in 

this research it was considered as an alternative to the local 

maximum approach (described later). Two phase process that 

consists of image preparing and processing steps was realized 

for tree identification using a segmentation method. In the 

image preparatory phase, smaller images from the aerial 

photographs were created and geographical information for 

each of them was stored. In segmentation process, each image 

was divided into several regions. Result of this process is a set 

of segments, covering the entire image or individual object 

contours, that can be facilitated in further image analysis and 

processing tasks. All pixels in the segment have common 

colour, intensity, texture and other characteristics. For this 

study, colour segmentation algorithm that filters certain colour 

values specified by predefined masks was used on images 

green channels data.  

For image processing, different algorithms can be used to 

improve or on the contrary - to lower quality in order to avoid 

some noise in the data. Still by using standard image 

processing algorithms it is impossible to do an automated 

identification. For tree identification from aerial images it is 

necessary to develop special algorithms and methods that are 

based or use classical ones in some detailed tasks. Such 

method can be seen in figure (Fig. 4.). 

In this method (Fig. 4), tree identification process begins 

with detection of a pixel that belongs to the tree canopy. Once 

one pixel is found in given direction, algorithm looks for the 

other side of segment (border pixels). In a next step, centre of 

the vector given by two points is found and used to search the 

other border points in different directions that help to establish 

a correct tree top centre position. Geographic coordinates for 

identified trees are calculated using image geo-referenced data 

and its pixels are excluded from the searched area. After 

determination of tree centre coordinates, they are imported into 

the database. In addition to the coordinate information, the 

image colour component values and all other available data are 

recorded for postprocessing tasks. 

Tree identification through segmentation method is less 

labour intensive as compared to the local maximum method, as 
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well as less complex from calculation point of view. But in the 

practical tests on selected sample plots it shows worse results 

than the local maximum method, and therefore it was not used 

for all sample plots in this study. 

 
Fig. 4. Tree colour segmentation method 

The main method used in this study for tree identification 

from aerial photographs is based on the local maximum 

approach (Rossmann, et al., 2007; Popescu and Wynne, 2002), 

where using the Fourier transform process that consists of 

several stages- image preparation, image processing and 

compilation of results- is performed. 

Split image in to blocks (where with and height is of size 2n)

Foreach block

Perform Fourier transform,
 filtering and backward transform

Crate gradient images in 4 or 8 different directions

Intersect resulting gradient images

Convert image to binary

Read and save coordinates of maximum
values (as a tree center)

[Next block] 

 
Fig. 5. Local maximum method for ADS data 

Figure (Fig. 5) shows main steps used in local maximum 

method for tree identification. It begins with image division 

into several sub images of size 2n. Main reason for such 

deviation and size restrictions is dictated by fast Fourier 

transformation algorithm used in next steps. After Fourier 

transformation each subimage is filtered and transformed back 

to spatial domain. In a next step gradient images in 4 or 8 

different directions are calculated and intersected with each 

other. Then the binary image is created, by using results of 

previous steps such that maximal values show only local 

maximum points. Main reason for choosing Fourier 

transformation and performing filtering in frequency domain 

instead of simple Gaussian filtering is speed of used methods 

and descriptions of successful usage found in publications. 

Fourier transformation is described as a method of choice for 

tree identification (Vaughn et al., 2011; Vaughn et al., 2012; 

Edwards and Nesbitt, 2002), and it is also tested in tree species 

identification tasks (; Nicholas et al., 2012). 

Usage of Fourier transformation is studied both for tree 

position (Vaughn et al., 2011; Vaughn et al., 2012; Edwards 

and Nesbitt, 2002), and species identification (Nicholas et al., 

2012). 

3. Results and discussion 

3.1. Comparison of tree identification methods used 

in the study 
Before the remote sensing data processing 10 sample plots 

in the study area were selected for compliance evaluation of 

different tree identification methods, as well as for 

identification of ALS and ADS data collection altitude affects 

on the tree identification process. Totally 252 trees were 

measured in sample plots. Plots were chosen to be structurally 

simple, so the proportion of second floor trees is as small as 

possible. At first, the most accurate methods using the ALS 

data with 9 p/m2 and ADS image resolution with a pixel size 

of 20 cm in the nature were established. Results of tree 

identification methods employed for comparison are shown in 

figure (Fig. 6.). 

Then their results were evaluated on data gathered at 

different altitude. The results can be seen in figures (Fig. 7., 8.) 

It should be noted that the comparison is based only on the 

number of trees identified in all sample plots together, without 

analyzing them over the tree species or forest floors or other 

woodwork characterizing parameters. Local maximum method 

with a Gaussian filter for ALS data and Fourier filter for ADS 

data were considered to be the most accurate method for 

identifying the trees. Consequently these methods were used 

for tasks of tree identification for all sample plots in the study 

area. 

Number of researchers have successfully used DB SCAN 

algorithm, but in practical sample plot test the algorithm 

showed poor results. 

Lack of precision of the global maximum method may be 

explained by the fact that part of the ALS data set points, after 

finding global maximum, is attached to a single tree and 

removed from future search. In this case, each wrongly deleted 

point can lead to some omission errors. 

Weak results of tree colour segmentation algorithm of 

image data could be explained by the fact that several trees are 

considered to be as one which leads to incorrect tree count 

results. 
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Fig 6. Comparison of methods for tree identification. 1- Global 

maximum method (ALS data used); 2 – Local maximum method 

with Gaussian mask (ALS data used); 3 – DB SCAN algorithm ( 

ALS data used); 4 – Local maximum method with Fourier 

filtering (ADS data used); 5 – Tree colour segmentation method 

(ADS data). ALS data with 9 p/m2 and ADS image resolution 

with a pixel size of 20 cm in the nature used. Deviation intervals 

show the minimum and maximum values.  

Tree identification process is one of the most important 

stages in forest inventory, which is based on a separate survey 

of trees from remote sensing data, because only when a tree is 

identified, it is possible to perform other measurements and 

make predictions about forest characteristics. 

3.2. Evaluation of results acquired from remote 

sensing data of different heights 
ALS point density per square meter depends on flight 

altitude. So the data at different heights is processed to 

evaluate the effect of ALS point density change on the tree 

identification outcome. Figure (Fig. 7.) shows percent of 

identified trees at different point densities. 

 
Fig. 7. Identified trees at different point densities. The evaluation 

was carried out in 10 sample plots of study area (252 trees). Plots 

were chosen to be structurally simple, so the proportion of second 

floor trees is as small as possible. Deviation intervals show the 

minimum and maximum values. 

Best results of tree identification process are reached at the 

highest point density per square meter, which would be 

understandable, but the most interesting part is that ALS data 

with average point density also shows fairly good results. 

Although in the study for data analysis and processing mostly 

data with highest density were used, this evaluation shows that 

ALS data with average point density could be used in practice 

if needed. 

The same as ALS data ADS image resolution depends on 

the flight altitude ADS. Figure (Fig. 8.) shows impact of ADS 

resolution change (result of changing flight altitude) on results 

of tree identification process. 

Similarly as with ALS data, the best tree identification 

results are achieved with higher resolution ADS images. 

Equivalent results show that a medium-resolution aerial 

photographs give fairly good results. For data analysis and 

processing of aerial photographs in this study, the images with 

20 cm pixel size in nature were used. 

In order to improve the process of tree identification, ALS 

and ADS data were combined. As a result, the number of 

identified trees in the best situation is representative of 92.3%. 

Possible options for ALS and ADS data aggregation and the 

results are shown in figure (Fig. 9). 

 
Fig. 8. Identified trees at different pixel size. The evaluation was 

carried out in 10 sample plots of study area (252 trees). Plots were 

chosen to be structurally simple, so the proportion of second floor 

trees is as small as possible. Deviation intervals show the 

minimum and maximum values. 

 
Fig. 9. ALS and ADS data aggregation results. The evaluation was 

carried out in 10 sample plots of study area (252 trees). Plots were 

chosen to be structurally simple, so the proportion of second floor 

trees is as small as possible. Deviation intervals show the 

minimum and maximum values. 

The combined methods show better results because a part 

of the trees, which are not recognized by the first method, will 

be recognized by the other and vice versa. ADS and ALS data 

consolidation result is shown in figure (Fig.10.). 

 
Fig. 10. Trees identified in aggregated ALS and ADS data. The 

illustration shows an orthophoto of the study area. The red points 

show the trees identified using ALS data processing methods, and 

the yellow points show the trees identified using ALS data 

processing methods. The flight altitude was 500 m, 9 ALS and 

ADS p/m2 20 cm pixels in nature. 

4. Conclusion 

Local maximum method with a Gaussian filter for ALS 

data and Fourier filter for ADS data showed the best results in 

practical sample plot tests and were considered the best for 

practical use in Latvian conditions. 
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Results of tree identification process can be improved by 

merging ALS and ADS results. 

ALS and ADS data structure has a significant impact on the 

number of identified trees. More trees can be identified with 

higher resolution ADS and with a higher point density ALS 

data. 

Latvian forest conditions are difficult for single tree remote 

sensing methods mainly due to mixed deciduous and 

coniferous spaces with high level of the second storey trees in 

one stand. Mostly the trees are close to each other, with high 

density and homogeneous crown. That is one of the main 

reasons for a large number of trees that are omitted. 

Number of recognized trees could be improved by 

performing laser scanning in spring when the forest is less 

dense, the first storey trees are more transparent and the 

smaller-dimension trees can be recognized. Also tree crown 

shape analyse from LIDAR data can be used, and it means that 

there is a need for LIDAR data with a higher level of point 

density per square meter. 
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Abstract: The biochemical networks can present the relationships between genes and gene products, proteins, metabolites and etc. 

The exploration of these networks helps to understand cellular processes, functions or properties of biological system. The growing 

size of interaction models of biological system building elements request determination of the most important topological 

measurements of given task and powerful automated software tools to perform the analysis. 

The network structure measures and properties are categorized in five groups: topological parameters, topological features, 

network metrics, network motifs and quantitative parameters of whole network structure. Topology analysis related features of 

software tools Cytoscape with plug-ins BiNoM and NetworkAnalyzer, VisANT, Biological Networks and CelNetAnalyser are 

reviewed to simplify the task-dependent choice. The applicability of software tools for calculation of 44 topological features is 

summarized. 

Research resulted in overview on biochemical network structure analysis, on used topological features with the following goals: 1) 

to accumulate the existing knowledge about the network structure analysis; 2) to provide a list of topological parameters and 

features; 3) to provide the information of the existing software tools for the structure analysis. 

 

Keywords: Network, structural model, graph theory, computer software. 

 

1. Introduction 

The number of biological experiments, corresponding data 

sets and discoveries in postgenomic era have been very 

intensive (Gehlenborg et al., 2010; Ideker et al., 2001). One of 

directions of fast data generation has been systems biology 

which is concentrating on study of biological interaction 

networks (Durek and Walther, 2008; Zhu et al., 2007). Cellular 

proliferation, differentiation, and environmental interactions 

each requires the production, assembly, operation, and 

regulation of many thousands of components, and they do so 

with remarkable fidelity in the face of many environmental 

cues and challenges (Zhu et al., 2007). Since the end of the 

1990s, there has been a flood of interaction data for proteins, 

carbohydrates, DNA, RNA, lipids and other molecules 

(Yamada and Bork, 2009) Each completed genome sequencing 

project generates large data sets of different interactions, 

specially protein-protein interactions (PPI) (Yamada and Bork, 

2009). Adding other types of interactions like metabolic 

networks, signalling networks, transcription regulatory 

networks the analysis problem of networks becomes critical 

due to their size. Still the network representation of mentioned 

interactions allows application of graph theory (Strogatz, 2001; 

Watts and Strogatz, 1998) and graph-topological analysis 

(Assenov et al., 2008) to the biological data to get insight into 

the global network structure. 

 Networks have “emergent” properties that are distinct 

from those of their individual components. Therefore networks 

have to be studied as systems. Emergent properties are non-

linear, aggregated and combinatory effects generated by the 

interaction of the components of the network. For example, 

properties such as topology, information flow and the stable 

state of a network can only be detected at the network level, 

not by examining the individual components such as genes or 

proteins. The structural and dynamic features of genetic 

networks ultimately contribute to biological functions, 

robustness and evolvability of the networks (Han et al. 

2004).The topological measures can capture the cellular 

features of cellular networks and provide broad insight into 

cellular evolution, molecular function, network stability, and 

dynamic responses (Chen et al., 2009). 

The author in this paper reviews and classifies the most 

popular measures and properties of biochemical network 

topology and the most relevant freely available software tools 

for its analysis. 

2. Measures and properties of network structure 

Examining scientific literature, publications and analyzing 

software tools, author found many network structure measures 

and properties, which can be categorized in five groups: 

topological parameters, topological features, network metrics, 

network motifs and quantitative parameters of whole network 

structure that are the global topological parameters (see Fig.1).  

Some of measures and properties will be explained below. 

2.1. Topological parameters 
Topological parameters can be divided in two groups – 

local and global parameters (Durek and Walther, 2008), 

corresponding to the measurable element. Local topological 

parameters characterize individual network components while 

global parameters describe the whole network. One of local 

parameters is the degree of a network node. The degree (or 

connectivity) (Barabási and Oltvai, 2004; Robins et al., 2008; 

Yamada and Bork, 2009) of an undirected network node, ki, is 
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the number of edges (links) that it has with other nodes (see 

Fig.2) that is incident with i: 


n

j

iji kk

 

(1) 

For directed network degree is separated in two types: 

incoming (in-degree) and out coming (out-degree) degree, 

depending on the direction of interactions (Hu et al., 2005). A 

degree is also a feature that distinguishes hubs (highly 

connected nodes) from leaves or orphans (weakly or non-

connected nodes) in the network (Zinovyev et al., 2008). In 

protein interaction and genetic interaction networks, for 

example, the degree of a hub (highly connected node) is often 

hub’s importance and essentiality for cell function (Hu et al., 

2005), process or whole system. 

Degree distribution dk is the number of nodes with degree 

k (k=1,2,…n) (Chen et al., 2009; Robins et al., 2008). For 

directed networks the degree distribution is separated into in-

degree and out-degree distribution.  

Let K be the degree of a network node. Then a statistical 

model for the degree distribution is represented by:  

N

N
kfkKP k )()(

 
(2) 

,where f(k) is a probability distribution 

Nk – a number of nodes with degree k=1,2…n 

N – the total number of nodes. 

The distribution of degrees f(k) in undirected network, 

gives the probability that a selected node has degree k 

(Barabási and Oltvai, 2004). In the case of directed networks 

one needs to consider two distributions, P(kin) and P(kout) 

(Boccaletti et al., 2006). 

The degree distribution of many types of real-life networks, 

such as metabolic or signalling, scientific collaboration 

networks is called a power law (Robins et al., 2008; Zhang and 

Shakhnovich, 2008): 
 k~)kK(P  (3) 

,where  - a constant or the degree exponent. 
 

Fig.1. Biochemical network measures and properties (Rubina and Stalidzans, 2010a)
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A power-law degree distribution indicates that a few hubs 

hold together numerous small components or nodes (Barabási 

and Oltvai, 2004). In scale-free networks most nodes have only 

one or two functional links, whereas a small number of nodes, 

the hubs, have many links (Han, 2008). Nearly all biological 

networks, including regulatory, interactome and metabolic 

networks are scale-free (Barabási and Oltvai, 2004; Boccaletti 

et al., 2006). Still there are other types of networks like 

random network and hierarchical network (Yamada and Bork, 

2009). 

2.2. Topological features 
 Studying the function of pathways, the property of interest 

is often how a given gene or protein is related to (or responds 

to) an up- or downstream signal. Given a large data set of 

interactions, it may be useful in some contexts to find the most 

direct path between two genes, proteins, complexes or 

pathways; for example, the overall lengths of such pathways 

may be related to the immediacy or breadth of signal response 

(Hu et al., 2005). 

According to the graph theory the path (Wilson, 1972) is 

the sequence of nodes from n0 to nk. There can be different 

types of paths: chain (have all different edges), simple chain 

(have all different nodes), closed chain or cycle (starts and 

ends with the same node). Cycles compose the separated group 

of network measures – network motifs. 

The path between two given nodes (see Fig.3). In case of 

signalling networks, the computation of all paths between pair 

of species helps to recognize all the different ways in which a 

signal can propagate between two nodes, e.g. all the different 

ways by which a certain transcription factor (or any other 

species from the output) can be activated or inhibited by 

signals riving the input layer.  

The path length lij is the number of edges (or links) in path 

from node i to j. 

The shortest path between two nodes is the path between 

two nodes in a network with a smallest number of steps 

compared to alternative paths between the same nodes 

(Yamada and Bork, 2009). 

The shortest path between given set of nodes is the path 

that connects all the nodes of given set with smallest number 

of steps. 

 

Fig.2. Undirected network. 

 

Fig.3. Directed network  

2.3. Network motifs 
Cellular networks are composed of complicated 

interconnections among nodes, and some subnetworks (in case 

of graph theory, subgraphs) of particular functioning are often 

identified as network motifs (Kim et al., 2008). Network 

motifs are the simple building blocks (Milo et al., 2002) of 

complex biochemical networks and are defined as patterns of 

interconnections that recur in many different parts of a 

network. The biochemical networks are composed of three 

highly significant motifs that repeatedly appear: feedback, 

feed-forward and self-loops. Each network motif has a specific 

function and play important dynamical roles in behaviour 

regulation of biological processes. 

Biological systems are known to be considerably robust to 

environmental changes and genetic perturbations (Barabási 

and Oltvai, 2004; Kitano, 2004, 2007; Kwon and Cho, 2007a). 

Robustness is a fundamental feature of complex systems that 

allows them to maintain its functions despite external and 

internal perturbations (Kitano, 2004). The main mechanism 

that ensures the robustness of a system is a system control that 

consists of negative and positive feedback. Presence of 

feedback is the important party of control in biological systems 

(Rubina and Stalidzans, 2012). Negative feedback promotes 

restoration of an initial condition of system. Positive feedback 

withdraws system all further from an initial condition and 

strengthens the processes of ability to live. 

From the viewpoint of network structure feedback is 

organized on feedback loops.  According to the graph theory 

feedback loop is closed simple cycle (Barabási and Oltvai, 

2004; Kwon and Cho, 2007a) of any length (Hallinan and 

Jackway, 2007) with the set of nodes where the nodes are not 

revisited except the starting and ending nodes. Exploring 

dynamic models of biochemical networks, researchers have 

established that feedback loops are very often found as a 

coupled structure in cellular circuits. Coupled feedback loop is 

closed cycle with the set of nodes where each node is visited 

twice (in reverse order) except one node in the middle of loop, 

for example, coupled feedback loop 

ABCDCBA. Coupled feedback loops can be 

positive and negative and can form three types of coupled 

structures (Kim et al., 2007; Kim et al., 2008): positive-

positive, positive-negative and negative-negative structures 

(see Fig.4). 
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Fig.4. Network motifs of coupled feedback loops (Kim et al., 2008). 
(A) Positive-Positive structures. (B) Positive-Negative structures. (C) Negative-Negative structures. 

Kwon and colleagues (Kwon and Cho 2007) have verified 

hypothesis on the relationship between feedback loops and the 

robustness of a network by employing Boolean network 

models. They found that three distinct feedback loops are 

responsible for genetic regulation, mRNA attenuation, and 

enzyme inhibition that regulate tryptophan concentrations in 

Escherichia coli. The complex regulatory network formed by 

the feedback loops induces a rapid and stable response, while 

being robust against uncertainties (Kwon and Cho, 2007a; 

Venkatesh et al., 2004). 

Kim with colleagues (Kim et al. 2007) suggests that 

coupled positive and negative feedback loops form essential 

signal transduction motifs in cellular signaling systems or 

signaling pathways. They performed mathematical simulations 

and investigations into various experimental evidences, and 

found that positive and negative coupled feedback circuits can 

rapidly turn on a reaction to a proper stimulus, robustly 

maintain its status, and immediately turn off the reaction when 

the stimulus disappears. In other words, coupled feedback 

loops enable cellular systems to produce perfect responses to 

noisy stimuli with respect to signal duration and amplitude 

(Kim et al. 2007). Likewise Shi with colleagues has proved 

(Shi et al., 2012) that coupled positive feedback loops can 

generate reversible and irreversible switch. And coupled 

positive feedback loops can strengthen bistable, enlarge signal 

and extend the signal reaction time. It means, that coupled 

positive feedback loops play an important role in regulation of 

biological behaviours. Therefore their recognition in 

biochemical networks is important task. 

3. Tools for structure analysis of biochemical 

networks 

According to the earlier performed analysis of existing 

tools (Rubina and Stalidzans 2010), the best tools for topology 

analysis is Cytoscape with plugins BiNoM and 

NetworkAnalyzer. Tools with good performance are also 

VisANT, Biological Networks and CelNetAnalyser. 

Comparative analysis of these tools demonstrates can simplify 

the choice of appropriate tool for solving of a particular task. 

CellNetAnalyser is free for academic use package for 

MATLAB. CNA provides an environment for structural and 

functional analysis of biochemical networks such as metabolic, 

signalling and regulatory networks. It includes metabolic flux 

analysis, analysis of basic topological / structural properties, 

metabolic pathway analysis and for signal flow (signalling, 

regulatory) networks including analysis of interaction graphs, 

analysis of logical (boolean) interaction networks. 

Cytoscape is an open source tool for visually exploring of 

biological networks, that support the SBML and BIOPAX 

standards. Cytoscape specializes in the representation of 

interaction networks and includes many powerful network 

display styles (Sudermann and Hallett, 2007).  Automatic 

layout algorithms help to organize massive amounts of 

interaction data relating to a set of molecules (Chen et al, 

2009). NetworkAnalyzer is the versatile Cytoscape plug-in 

(Assenov et al., 2008) that computes a comprehensive list of 

simple and complex topology parameters (single values and 

distributions) for directed and undirected networks using 

efficient graph algorithms. BiNoM is a Cytoscape plug-in, 

developed to analyze a structure of the networks. 

VisANT is free and open source integrative web-based 

software platform for the visualization, mining, analysis and 

modelling of the biological networks. Visant allows to create 

multi-scale networks, represent many types of biological data, 

such as biomolecular interactions, cellular pathways and 

functional modules and provides a visual interface for 

combining and annotating network data, supporting function 

and annotation data for different genomes from the Gene 

Ontology and KEGG databases. It contains statistical and 

analytical tools needed for extracting topological properties of 

the user-defined networks.  

Biological networks is free for academic use application 

for visualization and analysis of biological pathways. It is a 

graph-based system for creating a combined database of 

biological pathways, gene regulatory networks and protein 

interaction maps. After importing expression data, users can 

apply sorting, normalization and clustering algorithms on the 

data and then create various tables, heat maps and network 

views of the data. 

Next tables provide summary of topological parameters 

(Table 1, Table 2) and features of network structure (Table 3)  

that can be analyzed by selected software tools, dividing 

topological parameters in two main groups – simple and 

complex parameters. 
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 Table 1. 

Summary of computed simple topological parameters by software tools Visant, Cytoscape with BiNoM,CellNetAnalyzer 

and Biological Networks. 
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 Table 2. 

Summary of computed complex topological parameters by software tools Visant, Cytoscape with BiNoM,CellNetAnalyzer 

and Biological Networks. 

 Local topological parameters Global topological parameters 
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 Table 3. 

Summary of computed network motifs and topological features by software tools Visant, Cytoscape with 

BiNoM,CellNetAnalyzer and Biological Networks 

 Topological features Network motifs 

Parameters 
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4. Conclusion 

The topology of biochemical networks can be analysed 

using tens of measures and parameters. Analysis of software 

tools Visant, Cytoscape with BINOM and NetworkAnalyser, 

CellNetAnalyser and Biological Networks gives detailed 

overview about the functionality of software tools as well as 

their specialisation on determination of topological measures 

and parameters. Generally it is concluded that all the 

mentioned software tools can be involved in analysis of at least 

some measures and parameters of all five groups. 

Software tools Visant and Cytoscape with BINOM and 

NetworkAnalyser plug-ins has the highest number of 

calculated parameters among the other compared software 

tools with relatively high number of simple topological 

parameters. 

Software tools CellNetAanalyser and Biological Networks 

relatively more concentrate on calculation of complex 

topological parameters, network motifs and topological 

features. 

All the mentioned software tools can calculate shortest path 

between all nodes, shortest path between two given nodes and 

perform finding of feed-forward loops. 
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