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Abstract: Dynamic models give detailed information about the influence of many parameters on the behaviour of the biochemical 

process of interest. Parameter optimization of dynamic models is used in parameter estimation tasks and in design tasks. A 

drawback of the popular family of global stochastic optimization methods is the stochastic nature of the convergence of the best 

value of objective function to the global optimum or a value close to that. Therefore the optimization can take long time until a 

stable value of objective function is reached. Even then the risk of stagnation far from global optimum remains. That sets force to 

look for efficient approaches to reduce optimization time and discover cases of poor performance of optimization methods. 
Parallel optimization runs of identical optimization tasks can be used to reduce the impact of stochastic processes used in 

stochastic optimization methods. Consensus and stagnation criteria are proposed to terminate a set of parallel optimization runs 

when it is assessed that no significant improvements of the best value of the objective function are expected. 

Four automatically detectable cases of behaviour of a group of parallel optimization runs are analysed: 1) reaching of consensus 

criterion (consensus case), 2) stagnation of all optimization runs without reaching the consensus criterion (stagnation case), 3) 

stagnation at the initial value of the objective function, 4) lack of feasible solution. 

The proposed approach can be used automating the termination of optimization process when no further progress of the best value 

of objective function is expected. Suitability of particular optimization method with its settings for particular optimization task can 

be assessed analysing the dynamics of objective function’s best values of parallel runs.  
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1. Introduction 

The mission of systems biology and synthetic biology in 

metabolic engineering tasks (Mendes and Kell, 1998) is to 

facilitate the development of new bioprocesses by the help of 

in silico procedures thus reducing the amount of necessary 

biological experiments which are more costly both in terms of 

time and resources.  
Dynamic models give detailed information about the 

influence of many parameters of the network like kinetic 

parameters of reactions and concentrations of reactants 

(Stelling, 2004). The most typical approach to represent 

biochemical networks is through a set of coupled deterministic 

ordinary differential equations intended to describe the 

network and the production and consumption rates for the 

individual species involved in the network (Balsa-Canto et al., 

2010). The expected increase of the size of dynamic models 

(Jamshidi and Palsson, 2008) will facilitate their application.  

Serious challenge in case of optimization of dynamic model is 

lack of analytical optimization solutions to solve systems of 

nonlinear differential equations. 
Therefore the numerical methods are used in optimization 

tasks of biochemical networks. The numerical methods can be 

classified as local and global optimum seeking methods 

(Balsa-Canto et al., 2008; Mendes and Kell, 1998). Usually the 

global optimization methods are used to avoid stagnation of 

the solution in local optima. There are two classes of global 

numerical optimization methods: deterministic and stochastic.  

The advantage of some of deterministic methods is the 

guaranteed reach of global optimum for the price of unknown 

computation time (Banga, 2008; Moles et al., 2003). 

Therefore, the stochastic global optimization methods are the 

most popular in optimization tasks of biochemical networks 

due to their universality and relatively fast convergence to the 

global optimum close value (Banga, 2008; Moles et al., 2003).  
In case of single optimization run of stochastic global 

optimization method the termination criterion usually is a 

stable best value of the objective function for a relatively long 

time and it cannot be determined if that is a stagnation at local 

optima or the best value is reached. Therefore in case of 

stagnation of a single optimization run at local optima 

misleading conclusions can be done about the optimization 

potential of given set of adjustable parameters (Mozga and 

Stalidzans, 2011c).  
The convergence of global stochastic optimization methods 

is analysed in case of parameter estimation tasks (Baker et al., 

2010; Balsa-Canto et al., 2008, 2010; Mendes and Kell, 1998; 

Moles et al., 2003). Convergence dynamics for design 

optimization (Mendes and Kell, 1998) or more generally 

process optimization tasks where the properties of metabolic 

pathways are changed with the aim of enhancing the 
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production of some metabolite of interest (Mendes and Kell, 

1998; Moles et al., 2003) is analyzed in several recent 

publications (Mozga and Stalidzans, 2011b, 2011c; Mozga et 

al., 2011). A software tool ConvAn (Kostromins et al., 2012) 

for analysis of convergence dynamics suitable for both 

parameter estimation and design tasks has been developed for 

statistical analysis of performance of stochastic optimization 

methods. The convergence speed and reliability of 

optimization method are critical in design problems of 

biochemical networks (Mozga and Stalidzans, 2011b, 2011c) 

where even relatively small number (5-15) of adjustable 

parameters of the model cause hundreds or thousands of 

combinations to be explored (Mozga and Stalidzans, 2011a). 

The combinatorial explosion of number of adjustable 

parameter combinations sets force to look for efficient 

approaches to reduce necessary optimization time. 
A set of criteria is proposed to terminate a parallel 

optimization runs when it is assessed that no significant 

improvements of the best value of objective function are 

expected. The first criterion is the consensus of parallel 

optimization runs which indicate that all the parallel 

optimization runs have converged via different trajectories to 

the same solution indicating also good performance of the 

optimization method (Mozga and Stalidzans, 2011b, 2011c). 

The second criterion is a long stagnation of all optimization 

runs at different best values indicating poor performance of 

optimization method (Mozga and Stalidzans, 2011b, 2011c; 

Mozga et al., 2011). 
Use of proposed criteria for automatic termination of 

optimization both for parameter estimation and design tasks 

reduce the length of optimization experiment by more 

intensive use of computational resources due to parallel 

optimization runs. The main advantage compared to a single 

optimization run is the early detection of the best value 

(consensus of independent optimization runs) or bad 

performance of optimization (stagnation of at least one 

optimization run). 

2. Materials and methods 

Yeast glycolysis models from Biomodels data base (Le 

Novère et al., 2006) are used to examine the performance of 

consensus and stagnation criteria. Criteria are demonstrated in 

design optimization tasks where objective function has to be 

maximized.  Software COPASI (Hoops et al., 2006) is used as 

optimization tool. Parallel optimization experiments using 

stochastic global optimization methods with COPASI 4.7 

Build 34 are automatically set and performed using software 

CoRunner (Sulins and Stalidzans, 2012). Since stochastic 

optimization methods involve use of random numbers, 

successive optimization runs on the same model with the same 

algorithm converge to the best value in a different trajectory. 

Convergence dynamics of optimization runs is analysed using 

software ConvAn (Kostromins et al., 2012). 
In the maximization experiments the values are normalized 

the way that 0% of objective function value corresponds to the 

objective function value of unmodified model while 100% 

correspond to the best value of objective function found in any 

of parallel runs in particular time moment. Thus the value of 

objective function that correspond 0% remains constant while 

the value of 100% increases during optimization until the best 

value is reached or stagnation starts. 

In case of minimization experiments the best value of 

objective function is decreasing and the module of changes of 

the best value of objective function has to be taken into 

account calculating 100% value. 

Consensus criterion is fulfilled when all of parallel 

optimization runs reach a value of objective function which 

lies within pre-defined consensus corridor. The consensus 

corridor can be expressed in per cents: 3% corridor would 

mean that the best values of all parallel optimization runs have 

to be within 97-100% corridor. Criterion was analysed 

optimizing yeast glycolysis model of Galazzo and Bailey 

(Galazzo and Bailey, 1990) for ethanol production (Rodríguez-

Acosta et al., 1999). The model contains 2 compartments, 8 

reactions and 9 metabolites. Objective function in all 

optimization runs was to maximize flux of pyruvate kinase 

which is proportional to the ethanol production. 

Concentrations of enzymes catalysing reactions ATPase, GAP, 

Glucose in, Hexokinase, Phosphofructokinase and Pyruvate 

kinase were chosen as adjustable parameters. 
Evolutionary programming optimization method (Back and 

Schwefel, 1993; Back et al., 1997;  Fogel et al., 1992) was 

used with following method settings: Number of Generations: 

30000; Population Size: 20; Random Number Generator: 1; 

Seed: 0. The values of adjustable parameters were allowed to 

change within a wide range from -99% up to 900% from their 

initial values. “Steady state” subtask of optimization within 

COPASI was chosen to avoid solutions without steady state.  
Stagnation criterion is fulfilled when all the parallel 

optimization runs do not change their best value of objective 

function for a pre-set stagnation delay time while the 

consensus is not reached. The pre-set stagnation delay time can 

be defined in time units or as per cents of optimization 

duration.  Stagnation was analysed using yeast glycolysis 

model of Hynne and co-workers (Hynne et al., 2001). The 

model contains 2 compartments, 24 reactions and 25 

metabolites. Objective function in all optimization runs was 

   
            

              
                

The sets of adjustable parameters and the optimization 

method were chosen on purpose to observe the stagnation 

behaviour (Mozga and Stalidzans, 2011b). Concentrations of 

enzymes catalysing five reactions (Hexokinase, Alcohol 

dehydrogenase, ATP consumption, Glycerol synthesis, 

Phosphofructokinase) were chosen as adjustable parameters. 

Evolutionary programming optimization method (Back and 

Schwefel, 1993; Back et al., 1997; Fogel et al., 1992) was used 

with following method settings: Number of Generations: 

30000; Population Size: 20; Random Number Generator: 1; 

Seed: 0. The values of adjustable parameters were allowed to 

change within a wide range from -99% up to 1000% from their 

initial values. “Steady state” subtask of optimization within 

COPASI was chosen to avoid solutions without steady state. 
Five optimization experiments were performed for each 

experimental setup number of reactions for each optimization 

method on a server running 64-bit Microsoft Windows Server 

2008 Standard Service Pack 2 operating system. Server has 4x 

QuadCore Intel Xeon MP E7330 2400 MHz CPU and 32768 

MB of RAM. Single processor per task was used as COPASI 

does not support optimization with parallel task distribution. 
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3. Results and discussion 

Two criteria of termination of parallel optimization runs are 

tested for their ability to terminate the optimization when no 

significant increase of the best value is expected.  

Generally there are four cases of behaviour of a group of 

parallel optimization runs: 1) reaching of consensus criteria 

(consensus case), 2) stagnation of all optimization runs without 

reaching the consensus criteria (stagnation case), 3) consensus 

at the initial value of objective function, 4) lack of feasible 

solution.  

3.1. Consensus 

Convergence to consensus best value of the objective 

function indicates good performance of optimization when all 

the parallel runs of stochastic optimization method have 

reached the same or very similar best value within the 

consensus corridor. That is a good reason to conclude that the 

best value found is close to the global optimum still keeping in 

mind that finding global optimum cannot be guaranteed by 

stochastic global optimization methods (Banga, 2008; Moles et 

al., 2003). A consensus delay time (determined in time units or 

per cents of duration of optimization runs) can be used 

optionally to avoid coincidental short-time consensus.  
Illustrative consensus experiment (Fig.1) demonstrates 

application of consensus criterion. In this particular case there 

is no further improvement after fulfilling of automatic 

consensus criterion. On the other hand it is not guaranteed that 

there will not be further improvement as the behaviour of 

stochastic optimization methods cannot be predicted with full 

confidence. To increase the confidence about correctness of 

automatically made decision the number of parallel runs can be 

increased or the consensus corridor can be narrowed. Both 

changes will increase the probability of longer duration of 

optimization.  
3.2. Stagnation 

Stagnation case means that all the parallel optimization 

runs do not change their value for the delay time and at least 

one optimization run stagnate at value which is not within the 

pre-set consensus corridor of the best one gives indication 

about risk that the optimization method does not perform well 

for particular optimization task. There is increased risk that 

also the other runs stagnate at values which are far from the 

optimal solution. It is suggested to test another optimization 

method or settings of the method to improve the performance. 

In case if several methods perform similar way it might 

indicate the peculiarity of the model or particular set of 

adjustable parameters (Mozga and Stalidzans, 2011c).   
There is a risk of false detection of stagnation if the pre-set 

stagnation delay time is too short. This kind of risk can be 

reduced by increased delay time which increases the duration 

of optimization as a consequence. 

 

Fig. 1. The convergence dynamics of consensus case with five (a) and ten (b) parallel optimization runs. All optimization runs have 

reached the 3% consensus corridor in the time moment “1”. The consensus delay time “2” is 900s and lasts till the termination at the time 

moment “3”.  
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Fig. 2. The convergence dynamics of stagnation case with five parallel optimization runs. The stagnation termination criterion is fulfilled 

at the end of the time period “2” which represents the stagnation delay time.  In case of a shorter stagnation time (period “1”) the 

stagnation delay time counter is reset until the next stagnation starts. 

3.3. Stagnation at the initial value 

Stagnation of all parallel runs at the initial value of the 

objective function can be explained at least in two ways: 1) 

initial parameters of the model correspond to the best 

parameter values within the solution space and the 

optimization task is completed or 2) poor performance of 

optimization. The first case has very low probability. Still it 

cannot be fully ignored being a special case of consensus. 

Usually stagnation at the initial value of objective function is 

caused by poor performance of optimization method, huge 

solution space due to high number of adjustable parameters, 

complexity of computation because of the size or peculiarities 

of the model or other reasons. Improvement of optimization 

performance can be done by alterations of optimization 

method or its settings. Stagnation of all parallel runs at the 

initial value of the objective function is interesting as formally 

both consensus and stagnation criteria are reached. Therefore it 

is necessary to test if the value of objective function of initial 

model is improved to recognize this case automatically. 

Optimization can be terminated if initial value is not improved 

by any of parallel runs for some delay time.  

3.4. Lack of feasible solution 

Lack of feasible solution is a different case of stagnation at 

the initial value of objective function described above. Even 

very fast and reliably converging optimization method cannot 

find any solution if that is excluded by too strict or even 

contradicting constraints. In this case the best value usually is 

replaced by different expressions like “-INF”, “NAN” or 

others in different optimization software.  In this case it is 

useful first to check the existence of feasible steady states of 

the model with given constraints. If the feasible solution is not 

excluded by constraints, the optimization methods or their 

settings should be changed to improve the performance.  

Stagnation criterion can detect this case automatically if the 

expression of objective function that corresponds to the lack of 

any solution with steady state in particular optimization tool is 

known. Automatic detection of this case should be used 

introducing some delay time to ensure even a small feasible 

area in the proposed solution space to be found.  

4. Conclusion 

Consensus and stagnation criteria of termination of parallel 

optimization runs of global stochastic optimization methods 

have been tested for their use to terminate the optimization 

when no significant increase of the best value of the objective 

function is expected. This approach can give faster and more 

accurate conclusion about the best value of objective function 

at the cost of computational resources needed for performance 

of parallel runs. 

Consensus criterion is fulfilled when all of parallel 

optimization runs reach a value of objective function which 

lies within pre-defined consensus corridor. 

Stagnation criterion is fulfilled when all the parallel 

optimization runs do not change their best value of objective 

function for a pre-set stagnation delay time while the 

consensus is not reached. The pre-set stagnation delay time can 

be defined in time units or as per cents of optimization 

duration. 

Generally there are four automatically detectable cases of 

behaviour of a group of parallel optimization runs: 1) reaching 

of consensus criterion (consensus case), 2) stagnation of all 

optimization runs without reaching the consensus criterion 

(stagnation case), 3) stagnation at the initial value of the 

objective function, 4) lack of feasible solution. Optimization 

task can be considered as successfully completed only in the 

consensus case. Still also the other cases give valuable 

information about reasons of failure of particular setting of 

optimization task or optimization methods. 

To reduce the risk of finding suboptimal solution the 

number of parallel runs can be increased or the consensus 

corridor can be narrowed. The side effect is the increase of 

probability of longer optimization duration. The probability of 

false detection of stagnation can be reduced by increase of the 

pre-set delay time causing increase of optimization duration. 
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