
ISSN 2255-8004  25 
www.bit-journal.eu 

Biosystems and Information Technology (2012) Vol.1(1) 25-31 

DOI: http://dx.doi.org/10.11592/bit.121101  

review article 

Tools for analysis of biochemical network topology 

Tatjana Rubina
1*

 

 
1
Department of Computer Systems, Latvia University of Agriculture, Liela iela 2, LV3001, Jelgava, Latvia 

*Corresponding author 

Tatjana.rubina@llu.lv 
 
Received: 4 November 2012; accepted: 12 November 2012; published online: 13 November 2012. 
This paper has no supplementary material. 
 

 

Abstract: The biochemical networks can present the relationships between genes and gene products, proteins, metabolites and etc. 

The exploration of these networks helps to understand cellular processes, functions or properties of biological system. The growing 

size of interaction models of biological system building elements request determination of the most important topological 

measurements of given task and powerful automated software tools to perform the analysis. 

The network structure measures and properties are categorized in five groups: topological parameters, topological features, 

network metrics, network motifs and quantitative parameters of whole network structure. Topology analysis related features of 

software tools Cytoscape with plug-ins BiNoM and NetworkAnalyzer, VisANT, Biological Networks and CelNetAnalyser are 

reviewed to simplify the task-dependent choice. The applicability of software tools for calculation of 44 topological features is 

summarized. 

Research resulted in overview on biochemical network structure analysis, on used topological features with the following goals: 1) 

to accumulate the existing knowledge about the network structure analysis; 2) to provide a list of topological parameters and 

features; 3) to provide the information of the existing software tools for the structure analysis. 
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1. Introduction 

The number of biological experiments, corresponding data 

sets and discoveries in postgenomic era have been very 

intensive (Gehlenborg et al., 2010; Ideker et al., 2001). One of 

directions of fast data generation has been systems biology 

which is concentrating on study of biological interaction 

networks (Durek and Walther, 2008; Zhu et al., 2007). Cellular 

proliferation, differentiation, and environmental interactions 

each requires the production, assembly, operation, and 

regulation of many thousands of components, and they do so 

with remarkable fidelity in the face of many environmental 

cues and challenges (Zhu et al., 2007). Since the end of the 

1990s, there has been a flood of interaction data for proteins, 

carbohydrates, DNA, RNA, lipids and other molecules 

(Yamada and Bork, 2009) Each completed genome sequencing 

project generates large data sets of different interactions, 

specially protein-protein interactions (PPI) (Yamada and Bork, 

2009). Adding other types of interactions like metabolic 

networks, signalling networks, transcription regulatory 

networks the analysis problem of networks becomes critical 

due to their size. Still the network representation of mentioned 

interactions allows application of graph theory (Strogatz, 2001; 

Watts and Strogatz, 1998) and graph-topological analysis 

(Assenov et al., 2008) to the biological data to get insight into 

the global network structure. 

 Networks have “emergent” properties that are distinct 

from those of their individual components. Therefore networks 

have to be studied as systems. Emergent properties are non-

linear, aggregated and combinatory effects generated by the 

interaction of the components of the network. For example, 

properties such as topology, information flow and the stable 

state of a network can only be detected at the network level, 

not by examining the individual components such as genes or 

proteins. The structural and dynamic features of genetic 

networks ultimately contribute to biological functions, 

robustness and evolvability of the networks (Han et al. 

2004).The topological measures can capture the cellular 

features of cellular networks and provide broad insight into 

cellular evolution, molecular function, network stability, and 

dynamic responses (Chen et al., 2009). 

The author in this paper reviews and classifies the most 

popular measures and properties of biochemical network 

topology and the most relevant freely available software tools 

for its analysis. 

2. Measures and properties of network structure 

Examining scientific literature, publications and analyzing 

software tools, author found many network structure measures 

and properties, which can be categorized in five groups: 

topological parameters, topological features, network metrics, 

network motifs and quantitative parameters of whole network 

structure that are the global topological parameters (Fig.1).  

Some of measures and properties will be explained below. 

2.1. Topological parameters 

Topological parameters can be divided in two groups – 

local and global parameters (Durek and Walther, 2008), 

corresponding to the measurable element. Local topological 

parameters characterize individual network components while 

global parameters describe the whole network. One of local 

parameters is the degree of a network node. The degree (or 

connectivity) (Barabási and Oltvai, 2004; Robins et al., 2008; 

Yamada and Bork, 2009) of an undirected network node, ki, is 
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the number of edges (links) that it has with other nodes ( Fig. 

2) that is incident with i: 
n

j

iji kk

 

(1) 

For directed network degree is separated in two types: 

incoming (in-degree) and out coming (out-degree) degree, 

depending on the direction of interactions (Hu et al., 2005). A 

degree is also a feature that distinguishes hubs (highly 

connected nodes) from leaves or orphans (weakly or non-

connected nodes) in the network (Zinovyev et al., 2008). In 

protein interaction and genetic interaction networks, for 

example, the degree of a hub (highly connected node) is often 

hub’s importance and essentiality for cell function (Hu et al., 

2005), process or whole system. 

Degree distribution dk is the number of nodes with degree 

k (k=1,2,…n) (Chen et al., 2009; Robins et al., 2008). For 

directed networks the degree distribution is separated into in-

degree and out-degree distribution.  

Let K be the degree of a network node. Then a statistical 

model for the degree distribution is represented by:  

N

N
kfkKP k)()(

 
(2) 

,where f(k) is a probability distribution 

Nk – a number of nodes with degree k=1,2…n 

N – the total number of nodes. 

The distribution of degrees f(k) in undirected network, 

gives the probability that a selected node has degree k 

(Barabási and Oltvai, 2004). In the case of directed networks 

one needs to consider two distributions, P(kin) and P(kout) 

(Boccaletti et al., 2006). 

The degree distribution of many types of real-life networks, 

such as metabolic or signalling, scientific collaboration 

networks is called a power law (Robins et al., 2008; Zhang and 

Shakhnovich, 2008): 

k~)kK(P  (3) 

,where  - a constant or the degree exponent. 
 

Fig. 1. Biochemical network measures and properties (Rubina and Stalidzans, 2010a).
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A power-law degree distribution indicates that a few hubs 

hold together numerous small components or nodes (Barabási 

and Oltvai, 2004). In scale-free networks most nodes have only 

one or two functional links, whereas a small number of nodes, 

the hubs, have many links (Han, 2008). Nearly all biological 

networks, including regulatory, interactome and metabolic 

networks are scale-free (Barabási and Oltvai, 2004; Boccaletti 

et al., 2006). Still there are other types of networks like 

random network and hierarchical network (Yamada and Bork, 

2009). 

2.2. Topological features 

 Studying the function of pathways, the property of interest 

is often how a given gene or protein is related to (or responds 

to) an up- or downstream signal. Given a large data set of 

interactions, it may be useful in some contexts to find the most 

direct path between two genes, proteins, complexes or 

pathways; for example, the overall lengths of such pathways 

may be related to the immediacy or breadth of signal response 

(Hu et al., 2005). 

According to the graph theory the path (Wilson, 1972) is 

the sequence of nodes from n0 to nk. There can be different 

types of paths: chain (have all different edges), simple chain 

(have all different nodes), closed chain or cycle (starts and 

ends with the same node). Cycles compose the separated group 

of network measures – network motifs. 

The path between two given nodes (Fig. 3). In case of 

signalling networks, the computation of all paths between pair 

of species helps to recognize all the different ways in which a 

signal can propagate between two nodes, e.g. all the different 

ways by which a certain transcription factor (or any other 

species from the output) can be activated or inhibited by 

signals riving the input layer.  

The path length lij is the number of edges (or links) in path 

from node i to j. 

The shortest path between two nodes is the path between 

two nodes in a network with a smallest number of steps 

compared to alternative paths between the same nodes 

(Yamada and Bork, 2009). 

The shortest path between given set of nodes is the path 

that connects all the nodes of given set with smallest number 

of steps. 

 

Fig. 2. Undirected network. 

 

Fig. 3. Directed network. 

2.3. Network motifs 

Cellular networks are composed of complicated 

interconnections among nodes, and some subnetworks (in case 

of graph theory, subgraphs) of particular functioning are often 

identified as network motifs (Kim et al., 2008). Network 

motifs are the simple building blocks (Milo et al., 2002) of 

complex biochemical networks and are defined as patterns of 

interconnections that recur in many different parts of a 

network. The biochemical networks are composed of three 

highly significant motifs that repeatedly appear: feedback, 

feed-forward and self-loops. Each network motif has a specific 

function and play important dynamical roles in behaviour 

regulation of biological processes. 

Biological systems are known to be considerably robust to 

environmental changes and genetic perturbations (Barabási 

and Oltvai, 2004; Kitano, 2004, 2007; Kwon and Cho, 2007a). 

Robustness is a fundamental feature of complex systems that 

allows them to maintain its functions despite external and 

internal perturbations (Kitano, 2004). The main mechanism 

that ensures the robustness of a system is a system control that 

consists of negative and positive feedback. Presence of 

feedback is the important party of control in biological systems 

(Rubina and Stalidzans, 2012). Negative feedback promotes 

restoration of an initial condition of system. Positive feedback 

withdraws system all further from an initial condition and 

strengthens the processes of ability to live. 

From the viewpoint of network structure feedback is 

organized on feedback loops.  According to the graph theory 

feedback loop is closed simple cycle (Barabási and Oltvai, 

2004; Kwon and Cho, 2007a) of any length (Hallinan and 

Jackway, 2007) with the set of nodes where the nodes are not 

revisited except the starting and ending nodes. Exploring 

dynamic models of biochemical networks, researchers have 

established that feedback loops are very often found as a 

coupled structure in cellular circuits. Coupled feedback loop is 

closed cycle with the set of nodes where each node is visited 

twice (in reverse order) except one node in the middle of loop, 

for example, coupled feedback loop 

ABCDCBA. Coupled feedback loops can be 

positive and negative and can form three types of coupled 

structures (Kim et al., 2007; Kim et al., 2008): positive-

positive, positive-negative and negative-negative structures 

(Fig. 4). 
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Fig.4. Network motifs of coupled feedback loops (Kim et al., 2008). 
(A) Positive-Positive structures. (B) Positive-Negative structures. (C) Negative-Negative structures. 

Kwon and colleagues (Kwon and Cho 2007) have verified 

hypothesis on the relationship between feedback loops and the 

robustness of a network by employing Boolean network 

models. They found that three distinct feedback loops are 

responsible for genetic regulation, mRNA attenuation, and 

enzyme inhibition that regulate tryptophan concentrations in 

Escherichia coli. The complex regulatory network formed by 

the feedback loops induces a rapid and stable response, while 

being robust against uncertainties (Kwon and Cho, 2007a; 

Venkatesh et al., 2004). 

Kim with colleagues (Kim et al., 2007) suggests that coup-

led positive and negative feedback loops form essential signal 

transduction motifs in cellular signaling systems or signaling 

pathways. They performed mathematical simulations and in-

vestigations into various experimental evidences, and found 

that positive and negative coupled feedback circuits can 

rapidly turn on a reaction to a proper stimulus, robustly main-

tain its status, and immediately turn off the reaction when the 

stimulus disappears. In other words, coupled feedback loops 

enable cellular systems to produce perfect responses to noisy 

stimuli with respect to signal duration and amplitude (Kim et 

al. 2007). Likewise Shi with colleagues has proved (Shi et al., 

2012) that coupled positive feedback loops can generate rever-

sible and irreversible switch. And coupled positive feedback 

loops can strengthen bistable, enlarge signal and extend the 

signal reaction time. It means, that coupled positive feedback 

loops play an important role in regulation of biological behavi-

ours. Therefore their recognition in biochemical networks is 

important task. 

3. Tools for structure analysis of biochemical networks 

According to the earlier performed analysis of existing 

tools (Rubina and Stalidzans, 2010), the best tools for topology 

analysis is Cytoscape with plugins BiNoM and 

NetworkAnalyzer. Tools with good performance are also 

VisANT, Biological Networks and CelNetAnalyser. 

Comparative analysis of these tools demonstrates can simplify 

the choice of appropriate tool for solving of a particular task. 

CellNetAnalyser is free for academic use package for 

MATLAB. CNA provides an environment for structural and 

functional analysis of biochemical networks such as metabolic, 

signalling and regulatory networks. It includes metabolic flux 

analysis, analysis of basic topological / structural properties, 

metabolic pathway analysis and for signal flow (signalling, 

regulatory) networks including analysis of interaction graphs, 

analysis of logical (boolean) interaction networks. 

Cytoscape is an open source tool for visually exploring of 

biological networks, that support the SBML and BIOPAX 

standards. Cytoscape specializes in the representation of 

interaction networks and includes many powerful network 

display styles (Sudermann and Hallett, 2007).  Automatic 

layout algorithms help to organize massive amounts of 

interaction data relating to a set of molecules (Chen et al, 

2009). NetworkAnalyzer is the versatile Cytoscape plug-in 

(Assenov et al., 2008) that computes a comprehensive list of 

simple and complex topology parameters (single values and 

distributions) for directed and undirected networks using 

efficient graph algorithms. BiNoM is a Cytoscape plug-in, 

developed to analyze a structure of the networks. 

VisANT is free and open source integrative web-based 

software platform for the visualization, mining, analysis and 

modelling of the biological networks. Visant allows to create 

multi-scale networks, represent many types of biological data, 

such as biomolecular interactions, cellular pathways and 

functional modules and provides a visual interface for 

combining and annotating network data, supporting function 

and annotation data for different genomes from the Gene 

Ontology and KEGG databases. It contains statistical and 

analytical tools needed for extracting topological properties of 

the user-defined networks.  

Biological networks is free for academic use application 

for visualization and analysis of biological pathways. It is a 

graph-based system for creating a combined database of 

biological pathways, gene regulatory networks and protein 

interaction maps. After importing expression data, users can 

apply sorting, normalization and clustering algorithms on the 

data and then create various tables, heat maps and network 

views of the data. 

Next tables provide summary of topological parameters 

(Table 1, Table 2) and features of network structure (Table 3)  

that can be analyzed by selected software tools, dividing 

topological parameters in two main groups – simple and 

complex parameters. 
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 Table 1. 

Summary of computed simple topological parameters by software tools Visant, Cytoscape with BiNoM,CellNetAnalyzer 

and Biological Networks. 
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 Table 2. 

Summary of computed complex topological parameters by software tools Visant, Cytoscape with BiNoM,CellNetAnalyzer 

and Biological Networks. 

 Local topological parameters Global topological parameters 
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 Table 3. 

Summary of computed network motifs and topological features by software tools Visant, Cytoscape with 

BiNoM,CellNetAnalyzer and Biological Networks. 
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4. Conclusion 

The topology of biochemical networks can be analysed 

using tens of measures and parameters. Analysis of software 

tools Visant, Cytoscape with BINOM and NetworkAnalyser, 

CellNetAnalyser and Biological Networks gives detailed 

overview about the functionality of software tools as well as 

their specialisation on determination of topological measures 

and parameters. Generally it is concluded that all the 

mentioned software tools can be involved in analysis of at least 

some measures and parameters of all five groups. 

Software tools Visant and Cytoscape with BINOM and 

NetworkAnalyser plug-ins has the highest number of 

calculated parameters among the other compared software 

tools with relatively high number of simple topological 

parameters. 

Software tools CellNetAanalyser and Biological Networks 

relatively more concentrate on calculation of complex 

topological parameters, network motifs and topological 

features. 

All the mentioned software tools can calculate shortest path 

between all nodes, shortest path between two given nodes and 

perform finding of feed-forward loops. 
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