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Abstract: Many combinations of adjustable parameters should be tested in optimization experiments of biochemical networks to 

find the smallest subset of parameters enabling the best improvements of objective function both in case of design task and 

parameter estimation task. In case of optimization with global stochastic optimization methods one of the problems is the 

termination of the optimization run looking for a good compromise between spent computational resources and probability that the 

best found value of objective function will be the global optimum. Longer runs increase the possibility to each the global optimum. 

Automatic termination criteria in case of consensus or stagnation of parallel optimization runs have been proposed as criteria for 

automatic termination. Varying the consensus and delay time settings different probability of reaching global optimum and 

duration of optimization can be reached. It is proposed to modify automatic optimization termination criteria of parallel 

optimization runs applying upper limit agreement of a number of parallel optimization runs. Automatic application of upper limit 

agreement would reduce the duration of scanning of the whole space of combination of adjustable parameters. This approach is 

tested on the yeast glycolysis model with six adjustable parameters using COPASI, CoRunner and ConvAn software for five 

parallel optimization runs per combination of adjustable parameters.  
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1. Introduction 

Modelling becomes more and more important part of 

engineering cycle of biochemical processes (Banga, 2008; 

Hübner et al., 2011; Mauch et al., 2001). Optimization is one 

of the application fields of modelling. Improving the 

performance of a biochemical network for industrial purposes 

the goal is to use as few as possible alterations to the system to 

reach industrially interesting strain (Nikolaev, 2010; Pentjuss 

et al., 2013;           -Acosta et al., 1999; Trinh and Srienc, 

2009; Unrean et al., 2010).  

The necessity to find the best combination per number of 

adjustable parameters leads to combinatorial explosion of 

combinations of adjustable parameters which have to be 

optimized (Stalidzans et al., 2012). Therefore, automatic 

screening of all the possible combinations becomes important. 

Unfortunately the systems of differential equations describing 

dynamics of biochemical networks can not be solved 

analytically and global computationally expensive stochastic 

optimization methods are used due to variety of reasons 

(Banga, 2008; Mendes and Kell, 1998). One of the problems of 

global stochastic optimization methods is the decision about 

the termination of optimization run because this kind of 

methods can not guarantee global optimality (Banga, 2008). 

That can be compensated by longer optimization runs. The 

optimization can be terminated when there are no changes of 

the best value of the objective function for a longer time. Due 

to stochastic nature the duration of optimization procedure 

becomes hardly predictable (Mozga et al., 2011; Nikolaev, 

2010) even for the same model and constant number of 

adjustable parameters in combination (Mozga and Stalidzans, 

2011a). Application of parallel optimization runs (Sulins and 

Stalidzans, 2012) with consensus and stagnation criteria is 

proposed to automate the termination of optimization runs 

(Sulins and Mednis, 2012). 

It is proposed to modify automatic optimization 

termination criteria (Sulins and Mednis, 2012) of parallel 

optimization runs (Sulins and Stalidzans, 2012) and use upper 

limit agreement of a number of parallel optimization runs to 

reduce the duration of scanning of the whole space of 

combination of adjustable parameters. This approach is tested 

on the yeast glycolysis model of Galazzo and Bailey (Galazzo 

and Bailey, 1990) with six adjustable parameters.  

2. Materials and methods 

2.1. Model and optimization task setting 

The yeast glycolysis model (Galazzo and Bailey, 1990) is 

used as an optimization task example. The optimization task is 

set according to the in silico optimization experiments of 

ethanol production performed by Rodriguez-Acosta on the 

same model (          -Acosta et al., 1999). Concentrations of 

six enzymes catalyzing reactions ATPase, GAPD, Glucose in 

(Glu), Hexokinase (HK), Phosphofructokinase (PFK) and 

Pyruvate kinase (PK) are chosen as adjustable parameters. 63 

combinations of six adjustable parameters (up to six out of six) 

are optimized. The range of changes of adjustable parameters 

is set within range from -99% to +900% (from 100-fold 

decrease to 10-fold increase) from their initial values. 

Maximization of the flow through reaction Pyruvate kinase 

(PK) (proportional to the ethanol production) is set as the 

objective function. Generally the proposed approach upper 

limit agreement can be used also for minimization tasks. 
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2.2. Software tools and optimization settings 

The experiments are performed using COPASI (Hoops et 

al., 2006) Build 35 as the optimization tool. Particle swarm 

optimization method was used with following settings: 

iteration limit 30000, Swarm Size 50, Std. Deviation 1-e-06, 

Random Number Generator 1 and Seed 0. Steady state subtask 

is selected.  

CoRunner software (Sulins and Stalidzans, 2012) is used 

for management of parallel optimization runs of COPASI files. 

Parallel optimization runs are stopped when all the five parallel 

runs have reached consensus with consensus corridor 1 % and 

delay time 15 minutes. The data about the dynamics of the 

objective function values of these optimization runs are used as 

test case to examine the reliability of proposed optimization 

termination criteria which are less demanding than consensus.  

ConvAn software (Kostromins et al., 2012) is used for 

discretization and analysis of convergence dynamics of parallel 

optimization runs. The discretization step is set at 60 seconds.  

2.3. Determination of upper limit 

Consensus of two and more optimization runs at the best 

value of objective function is tested as termination criterion of 

parallel optimization runs of global stochastic optimization 

methods (Fig. 1). The best value of objective function for each 

combination of adjustable parameters after reaching the 

consensus (as described in section 2.2) is set as global 100% 

value to assess the effect of less demanding consensus criterion 

on the reduction of objective function value. The necessary 

time to reach for consensus (as described in section 2.2) is set 

as 100% of optimization time to assess the reduction of 

optimization duration using upper limit agreement criteria. 

Only combinations of adjustable parameters which reach 

consensus (Sulins and Mednis, 2012) are used in this study. 

Upper limit agreement of two (three, four...) runs 

termination criterion is satisfied when within 1% consensus 

corridor of the best objective function value among all the 

parallel runs  are two (three, four...) best values of objective 

function of parallel runs. There is no delay time applied (delay 

time=0). 

. 

 
Fig. 1. Determination of upper level agreement for two and more parallel optimization runs and corresponding losses of 

best value and savings of computational time. 0% and 100% of increase of objective function best value correspond to the 

value of model before optimization and after delay time of consensus correspondingly. 100% of optimization time 

correspond to 1620 seconds. 

 

3. Results 

Earlier termination of parallel optimization runs reduces 

the duration of optimization and the best value of objective 

function (Fig. 2). Totally 63 combinations consist of 

correspondingly 6, 15, 20, 15, 6 and 1 combinations of 1, 2, 3, 

4, 5 and 6 adjustable parameters in combination. The number 

of combinations that reached consensus/stagnation state are 

correspondingly 6/0 for one adjustable parameter in 

combination, 15/0 for two adjustable parameters in 

combination, 17/3 for three adjustable parameters in 

combination, 19/1 for four adjustable parameters in 

combination, 5/1 for five adjustable parameters in combination 

and 1/0 for six adjustable parameters in combination. Totally 

five out of 63 combinations stagnated and are not included in 

the calculations for Fig. 2. There is no statistics about the case 

of six adjustable parameters as there is only one combination 

possible. 
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a) b) 

  
c) d) 

  
e) f) 

  
g) h) 

  
i) j) 

Fig. 2. Reduction of objective function value and on the increase of optimization time for one (a and b), two (c and d), three 

(e and f), four (g and h) and five (i and j) parameters correspondingly. Error bars demonstrate the standard deviation at 

n=6 for one, n=15 for two, n=20 for three, n=15 for four and n=6 for five parameters.
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4. Discussion 

The reduction of the optimization time compared with full 

consensus within 1% corridor and 15 minutes delay time is 

about 80% independent on the number of adjustable 

parameters per combination. The curves are decreasing but still 

the average values always remain above 60% indicating that 

the saving of optimization time can be expected about 60-90%. 

In absolute numbers the optimization duration savings increase 

with the number of parameters in combination. 

The average loss of best value can be significant in case of 

upper level agreement of two runs while it is below 1% 

starting from upper level agreement of three runs. Thus 

experiments demonstrate that consensus criterion (Sulins and 

Mednis, 2012) can be applied in a less strict way saving about 

2/3 of optimization time and loosing less than 1% of objective 

function improvement if upper level agreement of at least three 

parallel runs is reached. 

More experiments are needed to generalize the conclusions 

about the efficiency of upper limit agreement criterion. In case 

bigger models and larger set of adjustable parameters the 

length of optimization duration would increase (Mozga and 

Stalidzans, 2011b) and time savings in percents would reduce 

while the time savings in absolute numbers would increase. 

Looking at the savings of computational resources it can be 

calculated that faster result is reached by n-fold increase of 

computational resources where n is the number of parallel 

optimization runs. Thus in case of n-fold reduction of 

computational time would mean equal use of computational 

time (processor hours). More than n-fold reduction of 

computational time would mean additional benefit: savings of 

computational time in addition to the savings of optimization 

duration.  

The 100% of optimization time in this study is determined 

experimentally and means the moment of automatic 

termination at consensus within 1% corridor of all parallel 

optimization runs. The time scale would therefore change if 

the corridor or delay time would be changed. The time scale 

would change even more if 100% time would be determined 

voluntary by an expert. 

The algorithm for upper level agreement criteria 

implementation can be executed automatically in optimization 

software. 

5. Conclusion 

Significant time can be saved in case of approximate 

estimation of the best value of objective function for a 

particular combination of adjustable parameters using upper 

limit agreement criterion. Consensus of all parallel runs 

generally is a special case of upper level agreement criterion 

when all the parallel runs come to upper level agreement.  

Computational experiments demonstrate that upper level 

agreement of at least three parallel optimization runs reduces 

the necessary optimization time by 60-90% and reduces the 

best value of objective function just by up to 1% compared to 

consensus within 1% of five parallel runs with delay time of 15 

minutes. More extensive experiments would be needed to 

generalize this statement. 

The optimization termination algorithm can be executed 

automatically. 
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