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Abstract: The exploration of biochemical networks, such as gene regulation, metabolic, protein interaction and signal 
transduction networks helps to understand better cellular processes, properties and functions of biological system. An important 
task of biological systems investigation is exploration of biochemical networks evolution and dynamic changes of their structure 
under pressure of the mutations and natural selection that are mentioned as the main evolution forces. Proposed network growth 
models have been used to establish topological properties of biochemical networks, such as scale-free degree distribution, ultra-
small-world property, centrality and modularity. But they consider network evolution implicitly, generally and ignore important 
properties of biological systems. To demonstrate and investigate the evolution course of biochemical networks structure caused by 
genetic mutations, chosen by natural selection and depending of the biological system properties, evolution models are needed 
what takes into account these features. In this paper evolution modelling procedure is introduced as well as algorithm of 
biochemical networks structure that occurs as a result of genetic alterations by pressure of natural selection and takes into account 
different importance levels of biochemical processes. 

Keywords: Biochemical network, structure evolution, evolution modelling procedure, evolution algorithm, mutation operators, 
process importance. 

 

1. Introduction 
The number of known protein-protein interaction and 

metabolic data has increased with each completed genome 
sequencing project in last decade and availability of these data 
in several species enables comparative analysis to further 
functional and evolutionary understanding of molecular and 
cellular processes. The protein interaction and metabolic 
network data are derived from numerous experiments carried 
out using different techniques and parameters in various 
laboratories instead of single large-scale project (Yamada and 
Bork, 2009). Therefore it is very difficult and time-consuming 
through laboratory experiments derive all necessary data to 
build an understanding of biochemical network development, 
organization and evolution. For this reason the theoretical and 
computational models, modelling and simulations are needed. 

In the last century researchers have begun to study 
topological properties of biochemical networks from the 
evolutionary aspects (Chen et al., 2009) with the aim to build 
an understanding of how networks evolve. That provides 
insights into the structure and function of biochemical 
networks. There have been several network growth models 
proposed to identify the topological features of biochemical 
networks such as scale-free degree distribution (Barabasi and 
Albert, 1999; Albert et al., 2000; Barabasi and Oltvai, 2004; 
Boccaletti, 2006), ultra-small-world property (Watss and 
Strogatz, 1998; Wagner and Fell, 2001; Albert et al., 2000; 
Cohen and Havlin, 2003), centrality (Jeong et al., 2001; Fell 
and Wagner, 2000; Chen et al., 2009), high-degree clustering 
and modularity (Jeong et al., 2000; Ravasz et al., 2002; Pastor-
Satorras et al., 2003; Yook et al., 2004; Li et al., 2006) 

assuming that the current topology of a network is formed 
through a series of network assembly and evolution events 
(Chen et al., 2009). For example, duplication-mutation (with 
complement) models (Solē et al., 2002; Vazquēz, 2003; Kwon 
and Cho, 2007) (Fig. 1), duplication-divergence models 
(Pastor-Satorras et al., 2003; Wagner, 2003; Farid and 
Christensen, 2006; Kim and Marcotte, 2008; Hase and 
Niimura, 2012), duplication-deletion-divergence models (Farid 
and Christensen, 2006), preferential attachment model 
(Barabasi and Albert, 1999; Albert et al., 2000; Solē et al., 
2002; Wagner, 2003; Kim and Marcotte, 2008; Hase and 
Niimura, 2012) (Fig. 2), random growing network models 
(Callaway et al., 2000; Krapivsky et al., 2000; Kwon and Cho, 
2007), small world network models (Watts and Strogatz, 1998; 
Barrat and Weigt, 2000; Kwon and Cho, 2007) and other 
models. 

To explain network evolution, there have been invoked two 
kinds of processes (Sharan and Ideker, 2006; Yamada and 
Bork, 2009) that are taken for theoretical basis in developed 
network growth models: sequence mutations in a gene that 
modify a gene or its regulation, and gene duplication or 
deletion. Sequence mutations in a gene results in modifications 
of the interactions and corresponding protein may gain new 
connections or lose some of existing connections to other 
proteins. Sequence mutations can be point mutations, 
insertions or deletions, or mutations that affect the regulation 
of a gene, e.g. non-synonymous nucleotide substitution (Noort 
et al., 2004). Gene duplication implies the addition of a node 
with links identical to the original node, followed by the 
functional divergence of some of the redundant links between 
the two duplicate nodes. The gene deletion corresponds to the 
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loss of node and all associated links to it. The addition or 
deletion of link affects the connectivity of a network. As a 
result of a combination of these processes, extensive network 
rewiring can be observed when comparing the interaction of 
homologous proteins (Yamada and Bork, 2009).  

 

Fig. 1. Duplication-mutation models. 

 
Fig. 2. Scale-free or preferential attachment models.  

One of the main shortcomings of proposed network growth 
models is lack of underlying genome and simplified evolution 
implementation that arise generally in addition of nodes. The 
most frequent genetic events, such as whole-genome 
duplication, locally confined gene duplication and 
retrotransposition (Yamada and Bork, 2009) results in the gene 
duplication and lead to the node addition. However performed 
researches suggest that the evolution of links is coupled to 
evolution of nodes but is much more fine-tuned as links 
changes over time even if nodes are unaffected. Although 
quantification of link changes remains difficult while requires 
sufficient network data in several species which emerge 
slowly, there are plenty of genetic mechanisms that can easily 
lead to a link addition or deletion, such as point mutations, 
alternative splicing and domain accretion, inversion, shuffling 
and duplication (Yamada and Bork, 2009). 

The developed network models consider network evolution 
implicitly, generally and ignore relevant properties of 
biological systems. One of such properties is process 
importance (Rubina and Stalidzans, 2012) which allows 
separating for systems viability and living quality essential 
processes, and such processes that cause inessential 
characteristics and features of biological system. Particular 
evolutionary constraints can be identified only when taking 
into account the background of the general properties of 
biological system processes. To demonstrate and investigate 
the evolution course of biochemical networks structure caused 
by genetic mutations, chosen by natural selection and 
depending on the biological system properties, evolution 
models are necessary that take into account these features. In 
this study an algorithm has been proposed to take into account 
processes of different importance and evolutionary changes in 
gene level. The algorithm is tested and results are presented. 

2. Evolution modelling procedure of biochemical network 
structure 
Various changes are introduced in several genes and a 

whole genome, in the properties, features and characteristics of 
a biological system, in an organization and a course of cellular 
processes. Evolutionary changes of biochemical networks 
occur in their structure as a result of genome level alterations, 
while genes define and regulate organization and operation of 
biochemical networks. It is possible to connect a gene to a 
network link accordingly to the central dogma if the catalysed 
enzyme and its expressed gene are known (Fig. 3). Therefore 
to explore structure evolution of biochemical network we 
should connect genome sequence to biochemical reactions 
(Rubina and Stalidzans, 2012).  

 
Fig. 3. Genome and network level data relationship. 

To investigate the changes of biochemical network 
structure as a result of evolution, here is proposed evolution 
modelling procedure, which includes six consecutive stages 
(Fig. 4). 

The first stage of procedure is definition of initial network 
structure data that includes the three main substages: 1) 
definition of network nodes and links, 2) definition of initial 
genome, 3) connection of genome to network links. Initial 
network can be defined manually, entering each network node 
and link data or can be loaded from several existing models, 
for example SBML that are available on public databases, such 
as BioCyc (http://biocyc.org/) (Karp et al., 2005), EcoCyc 
(http://ecocyc.org/) (Keseler et al., 2011), KEGG 
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At each time step: 
- node vj is chosen uniformly at random 
- node vi+1=vj‘ is added and connected to all the 
duplicated node vi neighbours  
- each link of new added node vi+1 is removed with 
probability q 
- the new link is added with probability p between new 
vi+1 node and each node thar is not a neighbour of the 
duplicated vj node 
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(http://www.genome.jp/kegg/) (Kanehisa and Goto, 2000; 
Kanehisa et al., 2011), Reactome (http://www.reactome.org) 
(Croft et al., 2011). Initial genome should include gene 
sequences and information on current gene location in genome, 
i.e. a chromosome number. Initial artificial gene sequences and 
a chromosome number can be generated automatically.  

 
Fig. 4. Evolution modelling procedure. 

The second stage of the procedure includes an analysis of 
initial network structure that should be performed to assess the 
quality and adequacy of a chosen biochemical network model. 
During a topological analysis of network structure, different 
topological parameters can be calculated (Rubina and 
Stalidzans, 2010) and network motifs can be determined.  
Analysis results should be stored for further comparison with 
an acquired structure as a result of evolution. 

The third stage of the procedure is implementation of an 
evolution algorithm that includes two main parts: evolution of 
underlying genome by pressure of various mutations and 
structure evolution that depends on occurred alterations of 
underlying genome comparing it with an initial genome. An 
evolution algorithm is implemented as an iterative process, 
where an iteration number corresponds to a number of 
generations.  

A new network structure arises as a result of an evolution 
algorithm implementation. Newly obtained structures are 
analysed at the next stage of the procedure to get its 
topological parameters, such as a number of connected and 
isolated elements, a number of reactions and links, an average 
degree, an average number of neighbours, an average path 
length, an average clustering coefficient. 

At the last procedure stage, the new obtained network 
structure is compared with the initial one with the purpose to 
evaluate the acquired changes and draw a conclusion of the 
influence of applied mutations. 

3. Evolution modelling algorithm  
As a matter of fact, a proposed modelling algorithm for 

network evolution bases takes different types of genetic 
mutations and natural selection that is introduced in selection 
of the next generation offspring. The chosen genetic mutations 
influence on the underlying genome sequence, but do not 
change the length of a gene. The precondition of equal gene 
length is introduced to reduce similarity calculation time. 

Biologically observed mutation operators are mapped to the 
network level changes according to the set of conditions. 
Implementation of this algorithm is based on the following 
assumptions and limitations: 

• all genes are of equal size, i.e. nucleotide sequence 
length, 

• genetic mutations act upon the underlying nucleotide 
sequence and do not always have one-to-one correspondence 
with network level changes, 

• structure evolution emerge in links dynamic, 
• processes or links in a biological system are not 

equally important and can be divided into three groups by 
importance level. 

Each particular gene first should be connected to a 
biochemical network link before starting the evolution process 
to explore the structure evolution of a biochemical network.  

To perform the evolution process of network structure, 
evolution parameters should be defined at the beginning (Fig. 5). 
Evolution process will execute N times generating genomes of 
N generations. In each generation 10 genome copies are 
created and are subjected to the mutation and natural selection 
processes. There are selected candidates for the offspring of 
the next generation from 10 mutated genome copies. From n 
possible candidates only one genome is selected as an 
offspring accordingly to the principles of natural selection. The 
number of genome copies can be changed, but smaller number 
of copies decreases the number of potential candidates of the 
next generation offspring and it will have an impact on the 
evolution results. Than it is less candidates, than is less 
opportunity to choose the best one. 

 
Fig. 5. Definition of evolution parameters. 

An evolution algorithm consists of two main stages: 
genome evolution and structure evolution. Evolution process 
(Fig. 6) repeats N times, i.e. generations. At each generation 10 
copies of the previous generation or initial genome are created 
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and are subjected to a mutation process. Genome evolution 
process can be provoked by following mutation operators 
which rates are set by the user: 

• point mutation – an alteration of a single nucleotide in 
the gene sequence; 

• nucleotide inversion – a reinsertion of the gene 
segment in the same place but in reverse direction; 

• duplication – a duplication of gene sequence that 
results in a link addition; 

• deletion – a deletion of the gene sequence that results 
in a link removing; 

• inversion – a reinsertion of the gene sequence in 
reverse direction; 

• translocation – an exchange of a chromosomal 
segments between two nonhomologous chromosomes. 

To represent the influence of various types of mutations 
that occur in nature, here is offered to establish concordance 
coefficients for each gene that determine on which cases 
network level changes should be introduced. A concordance 
coefficient of each separate gene is calculated comparing the 
acquired gene sequence by nucleotide triplets with the initial 
benchmark-genome corresponding to gene sequence 
(concordance coefficient Rgki comparing to the initial gene 
sequence) and all other genes sequences (concordance 

coefficients Qgkij comparing to all the other genes). 
Concordance coefficient can take values between 0 and 1 
including these thresholds. In case when some of Qgkij >Rgki, 
and one of below accounted conditions are true, it is assumed 
that ith gene has begun to function as a j-th gene that results in 
ith link deletion and j-th link addition in the network structure. 

The higher is essentiality level of process, the stronger 
requirements are defined for gene sequence changes and 
concordance coefficients values. We assume that regulating 
genes of vital processes (1.essentiality level processes) can 
mutate nor more than for 30%, it means, to differ from the 
initial gene sequence, otherwise, an adjustable link in the 
network structure is deleted. Regulating genes of quality 
processes (2.essentiality level) can mutate to 50%. In a case as 
regulating gene sequence changes from 30 to 50%, than 
intensity parameter of adjustable link or node is reduced. If the 
regulating gene sequence mutates more than for 50%, the 
adjustable link is deleted. Insignificant genes may change up to 
80%, otherwise an adjustable link is deleted. In a case as 
regulating gene sequence changes from 50 to 80%, than an 
intensity parameter of an adjustable link or a node is reduced. 
The mutation limits of regulating genes of different essentiality 
level processes can be adjusted to a particular researcher’s 
opinion accordingly to the research purpose. 

              

Fig. 6. Implementation of evolution algorithm. 
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All the mutated genome copies are estimated by each gene 
concordance coefficient comparing it to the initial benchmark-
genome and a set of conditions. Comparing genes of mutated 
genome copies the emergence of the missense and nonsense 
mutations can be checked: 

• missense mutation – checking for single nucleotide 
change that results in a codon which codes for a different 
amino acid; 

• nonsense mutation – checking for single nucleotide 
change that results in a stop codon. If nonsense mutation 
occurs than the concordance coefficient of corresponding gene 

is reduced by half, ie.
2

Rgki . 

From 10 mutated genome copies, there are selected n 
candidates which probability ratio being chosen for the 
offspring of the next generation depends on the concordance 
coefficient of separate genome gRgk: 

 
k

Rgk
gRgk

k

1i
i∑

= =  (1) 

where Rgki – a concordance coefficient of an ith gene 
comparing it with the initial gene sequence, 

k – a number of genes in a genome. 
A mutated genome copy cannot be selected as candidate of 

the next generation offspring, if: 
• some of the vital genes are mutated more than for 

30% in case of vital and mixed network and/or 
• all the quality genes are mutated more than for 50% 

in case of quality or mixed network. 
For the offspring of the next generation there is only one 

candidate chosen from n selected candidates. According to the 
concordance coefficient of each individual gene of the selected 
offspring genome, the network structure changes are generated 
(Fig. 7) that can be the following: link addition, link deletion 
or decreasing/increasing of the link intensity. 

 
Fig. 7. Structure changes.

Under the influence of mutations, the protein amount that is 
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chemical reaction to, in which protein takes part. For this 
reason the intensity parameter for network links is entered. The 
intensity parameter in case of different importance processes 
can change value by different statistical laws: 
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can be described by a power law, 

• quality processes or links intensity parameter changes 
- by a linear law, and 

• insignificant processes or links intensity parameter 
changes can be described by a polynomial law. 
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The link addition and deletion displays only the marginal 
network structure states. Hence the introduction of links 
intensity parameter helps to bring out and mark out the 
intermediate states of the network. 

4. Application of the algorithm 
Proposed evolution algorithm of biochemical network 

structure is successfully implemented in modelling and 
analysis tool BINESA (BIochemical NEtwork Structure 
Analyser) and all the stages of proposed procedure of 
biochemical network structure can be performed in this tool. 

To demonstrate results of the network structure evolution, 
that are obtained using software tool BINESA, a medium-scale 
model of Z.mobilis central metabolism (Pentjuss et al., 2013) is 
used. The model includes 81 metabolites, 96 reactions (187 
links) and has average degree - 3.68, average in-degree - 1.83 
and out-degree – 1.85, average number of neighbours is 5.08 
and average clustering coefficient is 0.11. Next example 
demonstrates the influence of inversion on the structure of 
mixed network. 

In this example, the influence of the inversions on the 
Z.mobilis network structure is considered, which includes 16 
vital, 18 qualitative and 62 insignificant reactions. The 
importance of reactions was defined accordingly to the 
produced ATP quantity. 

To get the evolution results, there were 13 simulations 
conducted with 10 experiments at each set. The parameters of 
a simulation were: point mutation and nucleotide inversion 
probability 10-7, inversion probability rate within [0.04, 1], 
missense and nonsense mutations were checked. The evolution 
process in all the experiments was interrupted when there was 
no candidate for the next generation offspring, i.e. all the 
mutated genome copies contained at least one defective vital 
gene or no qualitative genes which mutated for more than 30 
% or 50% accordingly. When the inversion probability 
increases the average concordance coefficient values decrease 
and a greater number of genes is damaged. 

At the Fig. 8 are plotted average viability duration (2) 
values and its standard deviation (3). The viability duration 
increases when the inversion probability decreases by a power 
law, but its standard deviation values increase vastly to. 
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where VDi – a viability duration, i.e. the number of the last 
surviving generation, 

i - the experiment number in the experiments set. 
 
Fig. 9 demonstrates changes of the average number of 

reactions where the number of insignificant and quality 
reactions decrease (corresponding genes were deleted or 
corrupted), when the inversion probability rate is less than or 
greater than 20%. But the number of vital reactions remains 
increasing (corresponding genes mainly were not affected), 
when the inversion probability decreases. 

 

 
Fig. 8. Average viability duration dependence on inversion 

probability rate. 

 
Fig. 9. Average number of reactions dependence on 

inversion probability rate. 

5. Conclusion 
An algorithm is offered for evolutionary modelling of 

biochemical network structure that provides possibility to 
connect a genome to the network links and to generate network 
level changes based on alterations that occur during the 
evolution process, implementing genetic mutation operators at 
the genome sequence. The limitation of algorithm is that only 
mutations that do not change the length of gene are 
implemented. The algorithm takes into account different 
importance of biochemical processes and impact of their 
damage by mutations on the viability. The proposed algorithm 
can be used also for dynamic exploration of biochemical 
network during the evolution. 

The produced experiments on the software BINESA where 
the algorithm is implemented demonstrate dependence of the 
number of network reactions, the viability duration of the 
network, the genome concordance coefficient and the 
topological parameters of the network structure on the 
probability of different types of mutations in a Zymomonas 
mobilis central metabolism network. 
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