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Abstract: The exploration of biochemical networks, such &megregulation, metabolic, protein interaction asignal
transduction networks helps to understand bettdulee processes, properties and functions of bipbal system. An important
task of biological systems investigation is expiora of biochemical networks evolution and dynaotianges of their structure
under pressure of the mutations and natural sedecthat are mentioned as the main evolution foresposed network growth
models have been used to establish topologicalesti@s of biochemical networks, such as scale-flegree distribution, ultra-
small-world property, centrality and modularity. Bilhey consider network evolution implicitly, ge@gr and ignore important
properties of biological systems. To demonstrat iamestigate the evolution course of biochemiedivorks structure caused by
genetic mutations, chosen by natural selection degending of the biological system properties, @wiah models are needed
what takes into account these features. In thisepagvolution modelling procedure is introduced asllvas algorithm of
biochemical networks structure that occurs as ailtesf genetic alterations by pressure of naturgestion and takes into account
different importance levels of biochemical processe

Keywords: Biochemical network, structure evolution, evolatimodelling procedure, evolution algorithm, mutatioperators,
process importance.

1. Introduction assuming that the current topology of a networKoisned
through a series of network assembly and evoludwants
(Chen et al., 2009 For example, duplication-mutation (with
complement) modelsSpk et al., 2002Vazqwez, 2003 Kwon
and Cho, 200y (Fig. 1), duplication-divergence models
(Pastor-Satorras et al.,, 2003Vagner, 2003 Farid and
Christensen, 2006 Kim and Marcotte, 2008 Hase and
Niimura, 20132, duplication-deletion-divergence modelsa(id
and Christensen, 2006 preferential attachment model
(Barabasi and Albert, 199%lbert et al., 2000 Sok et al.,
2002 Wagner, 2003 Kim and Marcotte, 2008Hase and
Niimura, 2012 (Fig. 2), random growing network models
(Callaway et al., 20QKrapivsky et al., 2000Kwon and Cho,
N . . X 2007, small world network model$/Natts and Strogatz, 1998
orgamzat!on and evolution. qu this regson th@mm:al and Barrat and Weigt, 2000Kwon and Cho, 20Q7and other
computational models, modelling and simulationsreeeded. models

In the last century researchers have begun to study To explain network evolution, there have been irtbiwo

topological properties of biochemical networks frothe i
; . . . inds of processesSparan and ldeker, 200&amada and
evolutionary aspectCien et al,, 20Q9with the aim to build Bork, 2009 that are taken for theoretical basis in developed

iarl1nsi uhntgeriit; nd;rrllg gzru[l%vrenez:\r,]vc?rkfinigglrye.ofTT)?ct)clm'mm network growth models: sequence mutations in a geae
netv%orks There have been several network growtldefso modify a_gene or its regulation, and gene duplcator
Co . . growtii deletion. Sequence mutations in a gene resultulifioations
proposed to identify the topological features obdbiemical f the i . d it . .
networks such as scale-free degree distributiRargbasi and of the Interactions and corresponding protein main qiew
Albert, 1999 Albert et al., 2000Barabasi and Oltvai, 2004 connections or lose some of existing connectionsotteer
' N ' proteins. Sequence mutations can be point mutations

Boccaletti, 200 ultra-small-world property Watss and insertions or deletions, or mutations that affée tegulation
Strogatz, 1998Wagner and Fell, 2001Albert et al., 2000 4t 5 gene, e.g. non-synonymous nucleotide subistit@oort
Cohen and Havlin, 2003centrality Oec_mg et al., ZOOJFEU et al., 2003 Gene duplication implies the addition of a node
and Wagnerz 200@Chen et al., 2009 high-degree clustering i, jinks ‘identical to the original node, followeby the
and modularity {eong et al., 200Ravasz et al., 200Pastor-  g,¢4igng| divergence of some of the redundantdibktween

Satorras et al., 2003vook et al., 2004 Li et al, 200§  hq two duplicate nodes. The gene deletion cormepeo the
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The number of known protein-protein interaction and
metabolic data has increased with each completethrge
sequencing project in last decade and availahifitthese data
in several species enables comparative analysifurther
functional and evolutionary understanding of molaciand
cellular processes. The protein interaction and abwdic
network data are derived from numerous experimeatsed
out using different techniques and parameters irioua
laboratories instead of single large-scale prof¥etmada and
Bork, 2009. Therefore it is very difficult and time-consurgin
through laboratory experiments derive all necessata to
build an understanding of biochemical network depeient,
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loss of node and all associated links to it. Thelitah or
deletion of link affects the connectivity of a netk. As a
result of a combination of these processes, extensgtwork
rewiring can be observed when comparing the intEnacof
homologous proteinsf@mada and Bork, 2009

At each time step:

- node yis chosen uniformly at random

- node v,=v;' is added and connected to all the
duplicated node;\neighbours

- each link of new added nodeg.vis removed with
probabilityq

- the new link is added with probabilipybetween new
Vi1 hode and each node thar is not a neighbour of the
duplicated ynode

Fig. 1.Duplication-mutation models.

At each time ste:
- new node y; is added

- new link is added between new;wode and existing
node in the network

Nodes with higher degree are likely to get a new. i

Fig. 2.Scale-free or preferential attachment models.

One of the main shortcomings of proposed netwookvtn
models is lack of underlying genome and simplifeablution
implementation that arise generally in additionnofdes. The
most frequent genetic events,
duplication, locally confined gene duplication and
retrotransposition{amada and Bork, 2009esults in the gene
duplication and lead to the node addition. Howepenformed
researches suggest that the evolution of linksoispled to
evolution of nodes but is much more fine-tuned ksl
changes over time even if nodes are unaffectechoftih
quantification of link changes remains difficult ilehrequires
sufficient network data in several species whicherya
slowly, there are plenty of genetic mechanisms that easily
lead to a link addition or deletion, such as pomitations,
alternative splicing and domain accretion, invarsishuffling
and duplicationYamada and Bork, 2009

The developed network models consider network digoiu
implicitly, generally and ignore relevant propestieof
biological systems. One of such properties is @®sce
importance Rubina and Stalidzans, 2012vhich allows
separating for systems viability and living qualiggsential
processes, and such processes that cause
characteristics and features of biological systérarticular
evolutionary constraints can be identified only wh=king
into account the background of the general propertf
biological system processes. To demonstrate anesiigate
the evolution course of biochemical networks stitetcaused
by genetic mutations, chosen by natural selectiond a
depending on the biological system properties, it
models are necessary that take into account tleegarés. In
this study an algorithm has been proposed to tatkeaccount
processes of different importance and evolutior@dgnges in
gene level. The algorithm is tested and resultpegsented.

2. Evolution modelling procedur e of biochemical network
structure

Various changes are introduced in several genesaand
whole genome, in the properties, features and ctexrstics of
a biological system, in an organization and a eoafscellular
processes. Evolutionary changes of biochemical owdsv
occur in their structure as a result of genomellaiterations,
while genes define and regulate organization aretatipn of
biochemical networks. It is possible to connectemegto a
network link accordingly to the central dogma ié tbatalysed
enzyme and its expressed gene are known (Fig.&refore
to explore structure evolution of biochemical netkvave
should connect genome sequence to biochemicalioract
(Rubina and Stalidzans, 2012

O

Y catalyzes

~

Enzymel

! _encode

Genel

consists of sequence

ACTGCGCTGCGTGTGCACTGCAAATGTT

Fig. 3.Genome and network level data relationship.

To investigate the changes of biochemical network
structure as a result of evolution, here is progoseolution
modelling procedure, which includes six consecutitages
(Fig. 4).

The first stage of procedure is definition of iaitnetwork
structure data that includes the three main substad)
definition of network nodes and links, 2) definiti@f initial
genome, 3) connection of genome to network linkstial
network can be defined manually, entering each ortwode
and link data or can be loaded from several exstirodels,
for example SBML that are available on public dat#s, such
as BioCyc (http://biocyc.org/)Karp et al., 2005 EcoCyc
(http://ecocyc.org/) Keseler et al, 20)1 KEGG

such as whole-genome
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(http:/mww.genome.jp/kegg/) Kanehisa and Goto, 2000
Kanehisa et al., 20)1 Reactome hitp://www.reactome.og
(Croft et al.,, 201L Initial genome should include gene
sequences and information on current gene locaiigenome,
i.e. a chromosome number. Initial artificial geeggences and
a chromosome number can be generated automatically.

Definition (input) of initial
structure

!

Analysis of initial structure

|

Implementation of
evolutionary algorithm

|

| Obtaining of new structure |

!

| Analysis of new structure |

!

Comparison of initial and
new structure

Fig. 4.Evolution modelling procedure.

The second stage of the procedure includes an sigaif/
initial network structure that should be perforntedissess the
quality and adequacy of a chosen biochemical nétwuardel.
During a topological analysis of network structudifferent
topological parameters can be calculateBukina and
Stalidzans, 200)0and network motifs can be determined.
Analysis results should be stored for further corigoa with
an acquired structure as a result of evolution.

The third stage of the procedure is implementatibran
evolution algorithm that includes two main partgolation of
underlying genome by pressure of various mutatiansl
structure evolution that depends on occurred diters of
underlying genome comparing it with an initial ger@ An
evolution algorithm is implemented as an iteratj®cess,

where an iteration number corresponds to a number o !

generations. Definition of generations number H/ GN=N /
A new network structure arises as a result of asiution GN

algorithm implementation. Newly obtained structurese I

analysed at the next stage of the procedure to itget
topological parameters, such as a number of coedeand
isolated elements, a number of reactions and liaksaverage
degree, an average number of neighbours, an aveqrate
length, an average clustering coefficient.

At the last procedure stage, the new obtained m&two
structure is compared with the initial one with {hapose to
evaluate the acquired changes and draw a conclugiche
influence of applied mutations.

3. Evolution modelling algorithm

As a matter of fact, a proposed modelling algoritfon
network evolution bases takes different types ohege
mutations and natural selection that is introduicedelection
of the next generation offspring. The chosen gemnatitations
influence on the underlying genome sequence, butnako
change the length of a gene. The precondition ohkgene
length is introduced to reduce similarity calcidatitime.

Biologically observed mutation operators are mappedhe
network level changes according to the set of domr.
Implementation of this algorithm is based on théofeing
assumptions and limitations:

. all genes are of equal size, i.e. nucleotide serpien
length,

. genetic mutations act upon the underlying nucleotid
sequence and do not always have one-to-one coméspoe
with network level changes,

. structure evolution emerge in links dynamic,

. processes or links in a biological system are not
equally important and can be divided into threeugso by
importance level.

Each particular gene first should be connected to a
biochemical network link before starting the evotprocess
to explore the structure evolution of a biochemigativork.

To perform the evolution process of network strrestu
evolution parameters should be defined at the bagin(Fig. 5).
Evolution process will execute N times generatisgames of
N generations. In each generation 10 genome cogies
created and are subjected to the mutation andalaetection
processes. There are selected candidates for therinfy of
the next generation from 10 mutated genome cojpiesn n
possible candidates only one genome is selectedaras
offspring accordingly to the principles of natusalection. The
number of genome copies can be changed, but snmaifeber
of copies decreases the number of potential catedidaf the
next generation offspring and it will have an impaa the
evolution results. Than it is less candidates, tlgmness
opportunity to choose the best one.

Definition of probability

parameters P; for each mutation
operator

Implementation of evolutionary algorithm
Definition of evolution parameters

%/ Op;:true/

Selection of genetic mutation
operators OP;

Definition of generations CGS
chosen for further comparison

[

Definition of genes estimation
parameters

L

\Initiation of evolution process

Fig. 5.Definition of evolution parameters.

An evolution algorithm consists of two main stages:
genome evolution and structure evolution. Evolutpocess
(Fig. 6) repeats N times, i.e. generations. At egeteration 10
copies of the previous generation or initial genare created
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and are subjected to a mutation process. Genomlitewo  coefficients Qgk comparing to all the other genes).
process can be provoked by following mutation ofmesa Concordance coefficient can take values betweemd &

which rates are set by the user: including these thresholds. In case when some &f @89k,
- point mutation — an alteration of a single nucldetin ~ and one of below accounted conditions are truis, #ssumed
the gene sequence; that ith gene has begun to function as a j-th dleaeresults in
« nucleotide inversion — a reinsertion of the geneith link deletion and j-th link addition in the medrk structure.
segment in the same place but in reverse direction; The higher is essentiality level of process, thenger
«  duplication — a duplication of gene sequence that'€quirements are defined for gene sequence chaagés
results in a link addition; concordance coefficients values. We assume thatlatgg
«  deletion — a deletion of the gene sequence thattses 9enes of vital processes (1.essentiality level ggses) can
in a link removing; mutate nor more than for 30%, it means, to diffemf the

« inversion — a reinsertion of the gene sequence ifnitidl gene sequence, otherwise, an adjustablee im the
reverse direction: network structure is deleted. Regulating genes wélity

. translocation — an exchange of a chromosomaP'Ocesses (2.essentiality level) can mutate to 30%.case as
segments between two nonhomologous chromosomes. regulating gene sequence changes from 30 to 50%,) th

To represent the influence of various types of tiors intensity parameter of adjustable link or nodeeduced. If the
that occur in nature, here is offered to estabtishcordance ~€9ulating gene sequence mutates more than for 3086,
coefficients for each gene that determine on whigses adjustable link is deleted. Insignificant genes rolagnge up to
network level changes should be introduced. A coface 80%, otherwise an adjustable link is deleted. Icase as
coefficient of each separate gene is calculatedpesimy the ~egulating gene seqt;ence dc_hangbelzs Ifrc;(m 50 t;dsog'ﬁ" a*(’j“
acquired gene sequence by nucleotide triplets thighinitial Intensity parameter of an adjustable link or a nsdeduced.
benchmark-genome  corresponding to  gene sequenc-ghe mutation limits of regula_tmg genes of d|ff_eu'eBsent|aI|ty
(concordance coefficient Rgicomparing to the initial gene €€l processg_s clan bﬁ adJUSIEdh to a particulaareiser's
sequence) and all other genes sequences (concerdan@PinNion accordingly to the research purpose.

Implementation of evolutionary algorithm Implementation of evolutionary algorithm
Implementation of mutation operations

Copying the initial or for next true
evolution selected genome G

GN-1

GN >0
Genome copies G i
~ 02 ~ GN>0and Genome copies G
Implementation of mutation is(G)=true
operations
i Implementation of chosen mutation
operators OP;
Selection of the t generation offspring l
genome
l I5(G)=false Genome copies G, with alternative
Interruption of
evolution process
true Comparison of genes gy;
with initial genome G genes
Definition of the t generation genome Concordance
J/ coefficients
Selection of genome candidates of t
Saving of genes of the t generation generation offspring k— Vi
genome
) Genome candidates G, of t
Implementation of network structure . .
generation offspring
changes
Saving of new network structure ] Selection of offspring genome of the H/ Gly

Fig. 6.lmplementation of evolution algorithm.
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All the mutated genome copies are estimated by gaok k
concordance coefficient comparing it to the inibehchmark- i_legk
genome and a set of conditions. Comparing genesutéted gRgk= _T 1)

genome copies the emergence of the missense arsemsan
mutations can be checked:

. missense mutation — checking for single nucleotide

change that results in a codon which codes for fierdnt A mutated genome copy cannot be selected as caaditia

amino acid; tati hecking f inal leotid the next generation offspring, if:
nonsense mutation — checking 1or singie nucleotide some of the vital genes are mutated more than for

change that results in a stop co_d_on. If nonsenstatron 30% in case of vital and mixed network and/or
occurs than the concordance coefficient of corredpmy gene .
. all the quality genes are mutated more than for 50%

is reduced by half, iel_?ik . in case of quality or mixed network.
2 For the offspring of the next generation there ritymne
From 10 mutated genome copies, there are selewted candidate chosen fromselected candidates. According to the
candidates which probability ratio being chosen tbe concordance coefficient of each individual gen¢hef selected
offspring of the next generation depends on thecomtance offspring genome, the network structure changeganerated
coefficient of separate genome gRgk: (Fig. 7) that can be the following: link additioink deletion
or decreasing/increasing of the link intensity.

where Rgk — a concordance coefficient of dth gene
comparing it with the initial gene sequence,
k — a number of genes in a genome.

Obtaining of new structure

Genes g;of the t generation

Gene g; of the t generation

REk;>0.2 any

Rgk<0.5and
V=3

Rgk;20.5 and
Rgk<0.7 and
V=2

Rgki<0.7
and V=1
Rgk;<0.5

and V=2 5k.20.7 an

Rgk<0.9 and
Vi=1

Recalculation of intensity

Deletion of the link L, of thelink L,

Recalculation of intensity

Deletion of the link L, of thelink L;

/

Recalculation of intensity
of thelink L

Deletion of the link L,

Qgk/>0.7 and
Rgk<0.7 and
V=1

Qgk;>0.2and
Rgk<0.2 and
V=3

gk/>0.5an
Rgk<0.5 and
V=2

Deletion of the link L; Deletion of the link L,

\I/ Deletion of the link L \I’

Insertion of the link L, \I/ Insertion of the link L

Insertion of the link L

Fig. 7.Structur e changes.

Under the influence of mutations, the protein antabat is e vital processes or links intensity parameter change
introduced by a gene can be reduced. It can infleenrate of  can be described by a power law,
chemical reaction to, in which protein takes pdibr this «  quality processes or links intensity parameter gkan
reason the intensity parameter for network linksritered. The - by a linear law, and
intensity parameter in case of different importapcecesses « insignificant processes or links intensity paramete
can change value by different statistical laws: changes can be described by a polynomial law.
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The link addition and deletion displays only thergiaal
network structure states. Hence the introduction lioks
intensity parameter helps to bring out and mark the
intermediate states of the network.

4. Application of thealgorithm

Proposed evolution algorithm of biochemical network
structure is successfully implemented in modelliagd
analysis tool BINESA (Blochemical NEtwork Structure
Analyser) and all the stages of proposed procedoire
biochemical network structure can be performedhis tool.

To demonstrate results of the network structurdutiom,
that are obtained using software tool BINESA, a imedscale
model ofZ.mobiliscentral metabolisnRentjuss et al., 20)1 3
used. The model includes 81 metabolites, 96 resst{d87
links) and has average degree - 3.68, averagegrede 1.83
and out-degree — 1.85, average number of neighbss<08
and average clustering coefficient is 0.11. Nexareple
demonstrates the influence of inversion on thecsire of
mixed network.

In this example, the influence of the inversions tbe
Z.mobilis network structure is considered, which includes 16
vital, 18 qualitative and 62 insignificant reactonThe
importance of reactions was defined accordingly the
produced ATP quantity.

To get the evolution results, there were 13 sinirat
conducted with 10 experiments at each set. Thenpeas of
a simulation were: point mutation and nucleotidgension
probability 10°, inversion probability rate within [0.04, 1],
missense and nonsense mutations were checkedvdhsien
process in all the experiments was interrupted where was
no candidate for the next generation offspring, aé the
mutated genome copies contained at least one tefedtal
gene or no qualitative genes which mutated for ntbaa 30
% or 50% accordingly. When the inversion probaypilit
increases the average concordance coefficient valaerease
and a greater number of genes is damaged.

At the Fig. 8 are plotted average viability durati¢?)
values and its standard deviation (3). The viabiitiration
increases when the inversion probability decrebyes power
law, but its standard deviation values increasdy&s

10
2VDO
avD=1= 2
10
Std= ()

where VD — a viability duration, i.e. the number of thetlas
surviving generation,
i - the experiment number in the experiments set.

[
=N

[5=Y
Q

=
<

Viability duration, VD (log)

02 04 06 08 1

Inversion probability, p

o

Fig. 8.Average viability duration dependence on inversion
probability rate.

%)

c

25 ‘ ‘ ‘ ‘

g « number of vital reactions

o 60  number of quality reactions
u— number of unimportant reactigns
o 50

@ 40

g 40

S 30

c

o 20

U) .c-: : N .

S 10 A S

o C

> 9 ‘ ‘ ‘ e ]
<% 02 04 06 08 1

Inversion probability, p

Fig. 9.Average number of reactions dependence on
inver sion probability rate.

5. Conclusion

An algorithm is offered for evolutionary modellingf
biochemical network structure that provides posisjbito
connect a genome to the network links and to gémetwork
level changes based on alterations that occur glutire
evolution process, implementing genetic mutatioerafors at
the genome sequence. The limitation of algorithrth& only
mutations that do not change the length of gene are
implemented. The algorithm takes into account dffié
importance of biochemical processes and impact hefir t
damage by mutations on the viability. The proposigdrithm
can be used also for dynamic exploration of biodbam
network during the evolution.

The produced experiments on the software BINESArahe
the algorithm is implemented demonstrate dependehdke
number of network reactions, the viability duratiof the

network, the genome concordance coefficient and the

Fig. 9 demonstrates changes of the average nunfber ¢opological parameters of the network structure e

reactions where the number of insignificant and ligua
reactions decrease (corresponding genes were delate
corrupted), when the inversion probability ratdess than or
greater than 20%. But the number of vital reactim®ains
increasing (corresponding genes mainly were notcédtl),
when the inversion probability decreases.

probability of different types of mutations in Zymomonas
mobiliscentral metabolism network.
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