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Abstract: The objective of this paper is showing how model predictive control can easily be implemented directly into industrial 

bioreactor automation systems and thus making this control technology accessible to the fed-batch fermentation processes. By 

means of a practical example it is shown how to keep the biomass concentration exactly on its predefined path taking the substrate 

feed rate as the only action variable in a bioreactor that is conventionally equipped with standard measurement devices. The model 

predictive control algorithm uses a very simple general process model the parameters of which are adapted during the cultivation 

process. Additionally the feed rate profile corresponding to the desired biomass profile is used as a scheduling variable to adapt to 

changes in the process dynamics and at the same time for safeguarding 

Keywords: Model predictive control, model adaptation, DCS, E.coli cultivation, recombinant protein production. 

 

1. Introduction 

Complex processes require complex control systems. Some 

fermentation processes can be considered examples for 

processes that require model aided control techniques. In these 

cases model predictive control is probably the most 

sophisticated variant. 

Model predictive control uses a process model to predict at 

every sampling point of the measurement variables the near 

future of the process, across a limited time horizon. For this 

period it computes possible variants of control settings in order 

to determine which one would lead to the best controller 

performance. The best setting is adopted for the next controller 

setpoint. At the following sampling point the procedure is 

repeated and the time horizon is shifted ahead by one time 

increment. This is why the procedure is often referred to as the 

receding horizon technique. Its advantage is that predictable 

changes in the process dynamics can be considered before the 

controller runs into problems. 

MPC has already been discussed with reference to various 

process industries (Maciejowski, 2001; Rossiter, 2003; Qin 

and Badgwell, 2003; Camacho and Bordons, 2004; Dittmar 

and Pfeiffer, 2004, Dittmar and Pfeiffer, 2006; Boudreau and 

McMillan, 2007). The MPC applications for fermentation 

processes were based on rapid prototyping software and 

programmed in Matlab (Jenzsch et al., 2006; Aehle et al., 

2012). The success of the latter suggested a user friendly 

implementation of MPC control strategy into industrial 

distributed control system (DCS, SIMATIC PCS7) in order to 

make this powerful technique generally available to 

fermentation processes.  

Such a technique is conceptionally elegant but depicts the 

difficulty that complex systems required complex models and 

hence the examples reported in literature require a 

considerable effort in model design and real time evaluation. 

This is problematic in practical industrial applications where 

automation systems are employed that are not optimized for 

the online solutions of complex models. Here only simple 

universal process models can be used. In order to make them 

applicable in model predictive controllers, the only way is a 

continuous parameter adaptation in order to compensate for 

modeling uncertainties. Furthermore, the search for the optimal 

controller parameter setting must be simplified. A general 

nonlinear optimizer is not applicable for two main reasons. 

First such software cannot be run in automation systems and 

secondly they would need too much computing power for such 

systems. Hence, the search for optimal control profiles across 

the time horizon must be restricted to paths which are truly 

distinguishable and possible in a given situation. In practice 

this reduces the number of solutions of the model equation to a 

handful of trials. 

This is the general philosophy of the work reported here, 

where it is shown how model predictive control was 

implemented in a standard Siemens SIMATIC PCS7 system 

and applied to E.coli culture producing recombinant proteins. 

2.  Materials and methods 

2.1. Experimental set up 

All fermentation were performed with E. coli BL21(DE3) 

pLysS. Offline measurements were performed with time 

increments of half an hour: Biomass concentrations were 

estimated from at-line OD600 measurements performed with a 

spectral photometer (Shimadzu UV-2102PC). Glucose 

concentrations were quantitatively determined with an YSI-

Glucose analyzer. In both cases, the measurement values 

transferred to the automation system were taken as the mean 

from 3 repetitions. The RMS values of these means were 

estimated to be less than 3%. 
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The cultivations were performed in a Biostat C 10-L-

bioreactor (B.Braun Biotech International, Melsungen, 

Germany) and operated in the fedbatch mode from the 

beginning. The cells were cultivated in a defined medium. 

Compositions of the initial medium and the feed solution are 

described in detail by (Gnoth et al., 2010). Substrate addition 

rates were controlled gravimetrically using a SIWAREX FTC 

weighing module and a Mettler Toledo balance. An 

autosampler Gilson FC203b was used for automatic and time-

precise sampling of off-line measurements. All other details of 

the experimental set-up were the same as those reported in 

Kuprijanov et al. (Kuprijanov et al., 2012a).  

The cultivation processes were operated under the control 

of a distributed control system Siemens SIMATIC PCS7 V7.1 

using our Bioreactor Control Toolbox (Kuprijanov et al., 

2012b). SIMATIC BATCH is used for the formation and 

configuration for the recipes of fermentation processes.  

2.2. Model used for predictive control 

Most advanced control systems reported in literature use 

the specific growth rate µ as the control variable since this is 

the key physiological variable characterizing the behaviour of 

the cells, i.e., the very bioreactors in a production process (e.g., 

Lee et al., 1989; Shioya, 1992; Yoon et al., 1994; Levisauskas 

et al., 1996; Soons et al., 2006; Wang et al., 2006; Jenzsch, 

2006a). From the product manufacturing perspective, however, 

it is better to control these processes along the corresponding 

biomass concentration profile as pointed out by Jenzsch et al., 

(2006b) as this leads to a better batch-to-batch reproducibility.  

Goal of the proposed control system is, thus, to control 

precisely the developed rational biomass set-point profile 

during the real cultivation by substrate feed manipulation. A 

general process model was used to predict the process behavior 

starting from the current time t across a time period [t, t+th]. 

For the usually applied fed-batch process, it was assumed to be 

sufficient to consider the state variables biomass concentration 

X, substrate concentration S and culture volume W only. The 

kinetics was dominated by the specific substrate uptake rate 

and the specific biomass concentration.  
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σmax is the maximum specific glucose consumption rate, KS 

the saturation constant of substrate, Yxs is the growth yield, 

Xmax the biomass concentration that can maximally be 

achieved. Long experiences with these systems and the noise 

levels of the available off- and online process data showed that 

Yxs is an appropriate model parameter that can be used to adapt 

the model uncertainties to the practically appearing process 

data. 

Under normal operating conditions, these fedbatch 

processes run under substrate limitation. Then it can be 

assumed that the substrate fed to the culture is immediately 

consumed by the cells and the actual Yxs can be estimated by 

the current amount of cells and the amount of substrate fed to 

the reactor. The latter is the feed weight cFeed times the 

substrate concentration SF of the solution fed to the cells 
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Using the offline data for biomass and substrate from the 

"golden batch" and the corresponding feed rate and weight 

profiles, the interval can be estimated in which Y'XS is varying 

across the fermentation process. This is depicted in Fig. 1. 

 
Fig. 1. Time-development of the growth yield Y’XS during a 

typical cultivation process controlled with the model 

predictive controller for study S744. 

As shown in the Fig. 1, Y'xs value varies considerably, 

showing that such adaptation is necessary during the 

cultivation. 

The initial model parameters were identified using process 

data from previously performed experiments. For that purpose 

a standard Nelder-Mead Downhill Simplex technique was 

used. (here Matlab’s fminsearch). The resulting model 

parameters are compiled in Table.1. 

 Table 1. 

Overview of model parameters used in the MPC control 

(E. coli bacteria). 

Parameter Value 

Ks 0.986 g kg
-1

 

max 2.33 g g
-1

 h
-1

 

Xmax 239.5 g kg
-1 

Y’XS 0.4-0.27 g g
-1

 

SF 600 g kg
-1

 

The model adaptation method was tested using simulation 

studies of the MPC. It was assumed, that the growth yield 

during the process changes according the profile, observed in 

real experiments. As shown in the Fig. 2 this adaptation 

procedure ensured a good controller performance.  

The optimal biomass and the corresponding feeding 

trajectories for the fermentation process can be obtained 

experimentally using probing control strategy (Åkesson et al., 

1999) or using model based approach described by 

Galvanauskas et al. (Galvanauskas et al., 1998). Very often in 

practice, however, such a setpoint trajectory for biomass and 
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the respective trajectory for the feed rate is taken from an 

experimentally derived operational procedure that is 

considered to be desirable, often referred to as the "golden 

batch".  

 
Fig. 2. Biomass measurement profile (symbols) for 

cultivation S744 and its set point (dashed) and the 

simulation (line) of the model predictive controller using 

the yield adaptation. 

2.3. Keeping the controller simple 

In order to keep the controller as simple as possible, some 

practical heuristic assumptions were made. The first is that the 

number of changes of the action variable, the feed rate, that are 

distinguishable in practice is limited, particularly when the 

feed rate profile of the undisturbed process is given as a 

reference Fref from the golden batch. Hence, an extensive 

optimization using the standard nonlinear numerical 

optimization routines is not necessary. Polling across the 

possible variants is sufficient. Then it is easy to find the best of 

all realistic variants by means of a simple RMS values. 

The integration this process model with MPC algorithm 

and implementation into real time commercial automation 

system is an interesting and actual problem. 

3. Implementation of the MPC 

3.1. Implementation tools 

In the work reported here, SIMATIC STEP7 was used for 

programming the MPC controller module. This is a specialized 

programming languages for PLCs and follows the DIN EN 

61131-3 standard.  

In order to implement the MPC module into PLC, the 

structured control language (SCL) was taken using an 

incremental programming approach. SCL is a Pascal-like high-

level language well suited for the implementation of complex 

algorithms (Berger, 2001).  

The continuous function chart (CFC) language was used 

for logically interconnecting the function blocks, the 

parameterization of all blocks as well as for the configuration 

of program sequences. This language is an appropriate 

instrument to generate the DCS-templates (Pfeiffer, 2007).  

As the controller needs two profiles for the controlled 

variable, in the accompanying example the biomass profile, 

and the corresponding profile of the scheduling variable, here 

the substrate feed rate profile of the golden batch, an 

appropriate tool is required that takes over these data records 

and make them available to the controller module.  

For that purpose a trajectory loading faceplate is designed, 

which allows to write up to 8000 setpoint values (reading 

cycles) for biomass setpoint trajectory and for predefined 

feeding trajectory. This module writes the data directly into the 

CPU's global data block (DB). The MPC function block can 

then easily access these trajectories any time. In this way time 

consuming communications between the MPC and SCADA-

workstation, where such trajectories are usually stored, were 

avoided (Fig. 3). In case of any short blackout of the operator 

station, these profiles are still available and there will be no 

impact on the controller performance.  

 Fig. 3. The picture represents a structure of saving 

biomass setpoint and predefined feeding trajectories 

directly into PLC memory. 

3.2. MPC algorithm and configuration 

The MPC function block for fermentation processes has 

four main functions:  

 managing the offline measured data;  

 model parameter adaptation;  

 solving the model equation;  

 solving the optimization problem.  

The algorithmic representation of program functionality is 

shown in Fig. 4. 

3.2.1. Managing the offline measured data 

An important characteristic of current fermentation 

processes is that many key variables such as biomass and 

substrate concentrations are measured offline. These data are 

usually available 15-30 minutes after sampling and the 

measurement values are then made available to the running 

fermentation. As this procedure is usually not available in 

currently used automation systems. Then it becomes important 

supporting this sampling event as well as the uptake of the 

measurement values.  

The offline measurement procedure starts with a 

registration of the actual sampling time. This instant of time is 

stored in the controllers instance data block (IDB) where 

simultaneously space is allocated for the offline measurement 

data to be filled in at a later point in time. The program also 

synchronizes this with the intern cycle at which the current 

online measured data (culture weight and total glucose-feed 

weight) are stored (also in the IDB). 

The reservation procedure can be triggered automatically 

by an automatic sampling device or manually by the laboratory 

personnel using a special "New sample" button. When the 

offline measurement values are available, within 15-30 min 

after sampling, they can be made available to the MPC module 

either via the keyboard or directly from the LIMS system 

installed in the laboratory. The corresponding MPC 

visualisation faceplate is shown in Fig. 5. 
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Fig. 4. Program algorithm of MPC programmed in the 

function block. The general procedure of iterative search of 

optimal feeding trajectory. 

 

 
Fig. 5. Visualisation of the MPC controller in the Simatic 

PCS7 system. With this faceplate the operator can 

manually set a time stamp and automatically allocates 

space for the off-line data to be expected from the sample 

upon its analysis. When these data are available, the 

faceplate allows writing them into that memory elements. 

The new offline measurement values are immediately 

utilized by the running MPC controller. 

3.2.2. Model parameter adaptation 

As explained above the actual biomass yield on substrate 

Y'xs is estimated from the expression 
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When the controller is running the estimate is based on off-

line measurement data at the sample time ts for X and S as well 

as the current online values of reactor's weight W and the 

glucose feed weight cFeed.  

3.2.3. Solving the model equation and determining the 

controller action 

Predicting the process behaviour across the time horizon 

requires numerically solving the model equations. For that 

purpose a simple Euler algorithm was chosen with the time 

increments (9 [s]) of the feed rate profile of the "golden batch" 

deposited in the controller module as described above. This 

method was chosen because of its simplicity and thus its easy 

implementation. It proved to be sufficiently accurate.  

Basis of the controller action is the reference feed rate 

profile Fref(t) stored in the data block of the PLC as described 

before. The MPC controller determines an optimal correction 

F to this basic profile across the time horizon 

hrefMPC nktktFtktFtktF ,1,0)|()|()|(  (3.2) 

For various choices of F, these feed rate segments are 

used to compute process responses for chosen prediction 

horizon. As the feed pumps do not allow for infinitesimal 

changes of FMPC, only 30 versions of F within ±10 % around 

the reference feed rate profile were computed. 

The range F depends on the accuracy and robustness of 

the reference profile Fref as well as of the expected deviations 

from that profile. Clearly, when the deviations are larger than 

10% the controller can only correct for that when its capture 

domain is larger. The value of 10 % was determined from 

numerical simulation experiments.  

Since jumps in the manipulated variable can cause 

disturbances in other critical process variables, for instance in 

the dissolved oxygen concentration in the bioreactor, they were 

avoided by taking an exponential correction approach for F  

hsetrefMPC NktkttktFtktF  ,1,0))|(exp(1()|()|(   (3.3)
 

Here the µset values can be changed stepwise in [0...µmax] 

range. As a constraint to FMPC, the pump characteristics were 

taken 

hrefMPCref NkFtktFtktFFtktF ,1,0)|()|()|( maxmin  (3.4) 

As with all other advanced controllers, the MPC is started 

after a fermentation time of 5 [h] only, since up to that time 

instant the data from the process are usually not reliable 

enough as to leading to a better process performance than an 

open loop controller along an exponential growth profile with 

µ<µmax (Jenzsch et al., 2006, Jenzsch et al., 2007). In this 

phase the reference trajectory Fref is taken to control the 

process.  

The MPC controller is activated upon the first offline 

sampling instance ts>5 [h]. The adaptation of Yxs parameter and 

following corrective prediction is carried out when the offline 

measurement values X(ts) and S(ts) are available within the 

automation station. The horizon for this corrective prediction is 
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[ts, th], this include the feed rate profile up to current time 

instant [ts, t]. For the rest of the time horizon 30 different 

variants for F(t, th) were taken. From the variants computed 

with these feed rate profiles, the one with the least deviation 

between the corresponding biomass and its setpoint profile 

segment is taken for control. Even from this profile only the 

feed value for the current time t is sent to the feeding valve. 

Upon each such cycle, the time horizon is then shifted 9 [s] 

ahead and the procedure is repeated for time horizon [t, th]. For 

that new cycle the initial values for the predictions were taken 

from the last optimal X biomass trajectory. The additional 

information in this cycle comes from the shifted biomass 

setpoint profile within the new time horizon. This will lead to a 

slightly different optimal feeding profile within that time 

interval t≤th. 

The duration of the receding time horizon was chosen to 

1 [h]. This value was derived from simulation studies made 

beforehand and was compared experimentally with other 

variants [0 .. 2 h]. An adaptation of the model was also made 

hourly. Within the last hour, the time horizon shrinks until its 

time span is zero at 18 [h] fermentation time. Finally, the time 

steps for the controller cycle was chose to be the same as the 

time increment for storing the online measurements. 

If an unexpected disturbance occurs during the cultivation 

process, there is a possibility to switch MPC controller into the 

safe open-loop operation mode. In that case the feeding 

reference trajectory Fref will be taken to finish the fermentation 

process. In the case of an abnormal or missing offline 

measurement the controller doesn't activate the model 

adaptation function and waits for the next automatic or manual 

sampling action. 

4. Results and discussion 

The proposed model predictive control procedure was 

implemented into our BioPAT library and run in our Siemens 

SIMATIC PCS7 automation system to control E.coli culture. 

 The controller is able to keep the process well within its 

specification limits. From the manufacturing perspective, 

however, the controller performance is importantly 

characterized by the batch-to-batch reproducibility that can be 

assured with such a controller and which clearly sets out the 

process quality. This way of performance quantification can 

best be appraised by plotting several MPC-controlled 

fermentation runs into a common plot. Fig.6 shows 5 such 

validation runs. Obviously the controller works perfectly over 

the entire fermentation process control time. The absolute 

deviations shown in the lower part of the plot clearly 

demonstrate the very good batch-to-batch reproducibility 

obtained with the MPC. 

The upper graph (Fig. 6) shows the data for the controlled 

variable, the lower one the absolute deviations of the 

validation runs from the set points. The symbols are the same 

in both plots. An important point to note here is that this 

process performance could be obtained with a minimum of 

measurement expenses. Comparably good batch-to-batch 

reproducibility was previously only obtained by controlling the 

total mass of carbon dioxide produced (tcCPR-Control), e.g, 

Jenzsch et al. (Jenzsch et al., 2007). That approach required 

measurements of the carbon dioxide volume fraction in the 

vent line of the fermenter and thus an offgas analysis that is 

not generally available at production fermenters. For the MPC 

controller, only the offline measurements of biomass via OD 

measurements and substrate concentrations measurements via 

(glucose analyzers) are needed. These measurements are being 

performed at most production reactors. The only online 

measurements that are used are feed rate and culture weight. 

While the former is generally measured, the balance needed to 

measure the second one is sometimes not directly available and 

then needs to be estimated from the added mass of substrate 

and the initial culture weight. 

 

Fig. 6. Results of 5 validation runs for the proposed MPC 

controller together with the set point profile which was 

taken from a previously optimized fermentation (Study 

S704).  

5. Conclusion 

In conclusion, the most important results of the work 

behind this report are: 

 A simple but powerful version of an adaptive model pre-

dictive controller was developed and tested in many real 

fermentations on the laboratory scale. 

 The corresponding software was developed in form of a 

module for the generally applicable professional automa-

tion system Siemens SIMATIC PCS7 and is thus portable 

(including its faceplates) to other cases of applications of 

this software. 

 The implementation of the model predictive controller 

was constructed without utilizing external general pur-

pose computing elements. The algorithms were directly 

implemented in the automations system thus avoiding 

complex synchronization expenses for external software.  

 An appropriate way of handling offline measurement data 

together with the corresponding online measurements 

was an essential hurdle during the development. This was 

solved in a simple way. 

 A priori information about changes in the process dynam-

ics could be extracted from the substrate feeding profiles 

of the "golden batch" from which the rational biomass 

setpoint profile of the process was taken. 

Acknowledgements 

This research was supported by the Research Council of 

Lithuania (grant No. MIP-056/2013) and Siemens AG, 

Karlsruhe, Germany. Their help is gratefully acknowledged. 

 

  



A.Kuprijanov, S.Schaepe, R.Simutis, A.Lübbert 

www.bit-journal.eu  31 

Abbreviation List  

MPC Model Predictive Control 

DCS  Distributed Control System 

SCL  Structured Control Language 

CFC  Continuous Function Chart 

DB  Data Block 

IDB  Instance Data Block 

SCADA  Supervisory Control and Data Acquisition 

LIMS  Labour Information's Management System 

RMS Route Mean Square 

tcCPR  Total Cumulative Carbon Production Rate 
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