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Abstract: The exploration of biochemical networks, such as gene regulation, metabolic, protein interaction and signal 

transduction networks helps to understand better cellular processes, properties and functions of biological system. An important 

task of biological systems investigation is exploration of biochemical networks evolution and dynamic changes of their structure 

under pressure of the mutations and natural selection that are mentioned as the main evolution forces. Proposed network growth 

models have been used to establish topological properties of biochemical networks, such as scale-free degree distribution, ultra-

small-world property, centrality and modularity. But they consider network evolution implicitly, generally and ignore important 

properties of biological systems. To demonstrate and investigate the evolution course of biochemical networks structure caused by 

genetic mutations, chosen by natural selection and depending of the biological system properties, evolution models are needed 

what takes into account these features. In this paper evolution modelling procedure is introduced as well as algorithm of 

biochemical networks structure that occurs as a result of genetic alterations by pressure of natural selection and takes into account 

different importance levels of biochemical processes. 

Keywords: Biochemical network, structure evolution, evolution modelling procedure, evolution algorithm, mutation operators, 

process importance. 

 

1. Introduction 

The number of known protein-protein interaction and 

metabolic data has increased with each completed genome 

sequencing project in last decade and availability of these data 

in several species enables comparative analysis to further 

functional and evolutionary understanding of molecular and 

cellular processes. The protein interaction and metabolic 

network data are derived from numerous experiments carried 

out using different techniques and parameters in various 

laboratories instead of single large-scale project (Yamada and 

Bork, 2009). Therefore it is very difficult and time-consuming 

through laboratory experiments derive all necessary data to 

build an understanding of biochemical network development, 

organization and evolution. For this reason the theoretical and 

computational models, modelling and simulations are needed. 

In the last century researchers have begun to study 

topological properties of biochemical networks from the 

evolutionary aspects (Chen et al., 2009) with the aim to build 

an understanding of how networks evolve. That provides 

insights into the structure and function of biochemical 

networks. There have been several network growth models 

proposed to identify the topological features of biochemical 

networks such as scale-free degree distribution (Barabasi and 

Albert, 1999; Albert et al., 2000; Barabasi and Oltvai, 2004; 

Boccaletti, 2006), ultra-small-world property (Watss and 

Strogatz, 1998; Wagner and Fell, 2001; Albert et al., 2000; 

Cohen and Havlin, 2003), centrality (Jeong et al., 2001; Fell 

and Wagner, 2000; Chen et al., 2009), high-degree clustering 

and modularity (Jeong et al., 2000; Ravasz et al., 2002; Pastor-

Satorras et al., 2003; Yook et al., 2004; Li et al., 2006) 

assuming that the current topology of a network is formed 

through a series of network assembly and evolution events 

(Chen et al., 2009). For example, duplication-mutation (with 

complement) models (Solē et al., 2002; Vazquēz, 2003; Kwon 

and Cho, 2007) (Fig. 1), duplication-divergence models 

(Pastor-Satorras et al., 2003; Wagner, 2003; Farid and 

Christensen, 2006; Kim and Marcotte, 2008; Hase and 

Niimura, 2012), duplication-deletion-divergence models (Farid 

and Christensen, 2006), preferential attachment model 

(Barabasi and Albert, 1999; Albert et al., 2000; Solē et al., 

2002; Wagner, 2003; Kim and Marcotte, 2008; Hase and 

Niimura, 2012) (Fig. 2), random growing network models 

(Callaway et al., 2000; Krapivsky et al., 2000; Kwon and Cho, 

2007), small world network models (Watts and Strogatz, 1998; 

Barrat and Weigt, 2000; Kwon and Cho, 2007) and other 

models. 

To explain network evolution, there have been invoked two 

kinds of processes (Sharan and Ideker, 2006; Yamada and 

Bork, 2009) that are taken for theoretical basis in developed 

network growth models: sequence mutations in a gene that 

modify a gene or its regulation, and gene duplication or 

deletion. Sequence mutations in a gene results in modifications 

of the interactions and corresponding protein may gain new 

connections or lose some of existing connections to other 

proteins. Sequence mutations can be point mutations, 

insertions or deletions, or mutations that affect the regulation 

of a gene, e.g. non-synonymous nucleotide substitution (Noort 

et al., 2004). Gene duplication implies the addition of a node 

with links identical to the original node, followed by the 

functional divergence of some of the redundant links between 

the two duplicate nodes. The gene deletion corresponds to the 
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loss of node and all associated links to it. The addition or 

deletion of link affects the connectivity of a network. As a 

result of a combination of these processes, extensive network 

rewiring can be observed when comparing the interaction of 

homologous proteins (Yamada and Bork, 2009).  

 

Fig. 1. Duplication-mutation models. 

 

Fig. 2. Scale-free or preferential attachment models.  

One of the main shortcomings of proposed network growth 

models is lack of underlying genome and simplified evolution 

implementation that arise generally in addition of nodes. The 

most frequent genetic events, such as whole-genome 

duplication, locally confined gene duplication and 

retrotransposition (Yamada and Bork, 2009) results in the gene 

duplication and lead to the node addition. However performed 

researches suggest that the evolution of links is coupled to 

evolution of nodes but is much more fine-tuned as links 

changes over time even if nodes are unaffected. Although 

quantification of link changes remains difficult while requires 

sufficient network data in several species which emerge 

slowly, there are plenty of genetic mechanisms that can easily 

lead to a link addition or deletion, such as point mutations, 

alternative splicing and domain accretion, inversion, shuffling 

and duplication (Yamada and Bork, 2009). 

The developed network models consider network evolution 

implicitly, generally and ignore relevant properties of 

biological systems. One of such properties is process 

importance (Rubina and Stalidzans, 2012) which allows 

separating for systems viability and living quality essential 

processes, and such processes that cause inessential 

characteristics and features of biological system. Particular 

evolutionary constraints can be identified only when taking 

into account the background of the general properties of 

biological system processes. To demonstrate and investigate 

the evolution course of biochemical networks structure caused 

by genetic mutations, chosen by natural selection and 

depending on the biological system properties, evolution 

models are necessary that take into account these features. In 

this study an algorithm has been proposed to take into account 

processes of different importance and evolutionary changes in 

gene level. The algorithm is tested and results are presented. 

2. Evolution modelling procedure of biochemical network 

structure 

Various changes are introduced in several genes and a 

whole genome, in the properties, features and characteristics of 

a biological system, in an organization and a course of cellular 

processes. Evolutionary changes of biochemical networks 

occur in their structure as a result of genome level alterations, 

while genes define and regulate organization and operation of 

biochemical networks. It is possible to connect a gene to a 

network link accordingly to the central dogma if the catalysed 

enzyme and its expressed gene are known (Fig. 3). Therefore 

to explore structure evolution of biochemical network we 

should connect genome sequence to biochemical reactions 

(Rubina and Stalidzans, 2012).  

 

Fig. 3. Genome and network level data relationship. 

To investigate the changes of biochemical network 

structure as a result of evolution, here is proposed evolution 

modelling procedure, which includes six consecutive stages 

(Fig. 4). 

The first stage of procedure is definition of initial network 

structure data that includes the three main substages: 1) 

definition of network nodes and links, 2) definition of initial 

genome, 3) connection of genome to network links. Initial 

network can be defined manually, entering each network node 

and link data or can be loaded from several existing models, 

for example SBML that are available on public databases, such 

as BioCyc (http://biocyc.org/) (Karp et al., 2005), EcoCyc 

(http://ecocyc.org/) (Keseler et al., 2011), KEGG 

(http://www.genome.jp/kegg/) (Kanehisa and Goto, 2000; 
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Kanehisa et al., 2011), Reactome (http://www.reactome.org) 

(Croft et al., 2011). Initial genome should include gene 

sequences and information on current gene location in genome, 

i.e. a chromosome number. Initial artificial gene sequences and 

a chromosome number can be generated automatically.  

 

Fig. 4. Evolution modelling procedure. 

The second stage of the procedure includes an analysis of 

initial network structure that should be performed to assess the 

quality and adequacy of a chosen biochemical network model. 

During a topological analysis of network structure, different 

topological parameters can be calculated (Rubina and 

Stalidzans, 2010) and network motifs can be determined.  

Analysis results should be stored for further comparison with 

an acquired structure as a result of evolution. 

The third stage of the procedure is implementation of an 

evolution algorithm that includes two main parts: evolution of 

underlying genome by pressure of various mutations and 

structure evolution that depends on occurred alterations of 

underlying genome comparing it with an initial genome. An 

evolution algorithm is implemented as an iterative process, 

where an iteration number corresponds to a number of 

generations.  

A new network structure arises as a result of an evolution 

algorithm implementation. Newly obtained structures are 

analysed at the next stage of the procedure to get its 

topological parameters, such as a number of connected and 

isolated elements, a number of reactions and links, an average 

degree, an average number of neighbours, an average path 

length, an average clustering coefficient. 

At the last procedure stage, the new obtained network 

structure is compared with the initial one with the purpose to 

evaluate the acquired changes and draw a conclusion of the 

influence of applied mutations. 

3. Evolution modelling algorithm  

As a matter of fact, a proposed modelling algorithm for 

network evolution bases takes different types of genetic 

mutations and natural selection that is introduced in selection 

of the next generation offspring. The chosen genetic mutations 

influence on the underlying genome sequence, but do not 

change the length of a gene. The precondition of equal gene 

length is introduced to reduce similarity calculation time. 

Biologically observed mutation operators are mapped to the 

network level changes according to the set of conditions. 

Implementation of this algorithm is based on the following 

assumptions and limitations: 

¶ all genes are of equal size, i.e. nucleotide sequence 

length, 

¶ genetic mutations act upon the underlying nucleotide 

sequence and do not always have one-to-one correspondence 

with network level changes, 

¶ structure evolution emerge in links dynamic, 

¶ processes or links in a biological system are not 

equally important and can be divided into three groups by 

importance level. 

Each particular gene first should be connected to a 

biochemical network link before starting the evolution process 

to explore the structure evolution of a biochemical network.  

To perform the evolution process of network structure, 

evolution parameters should be defined at the beginning (Fig. 5). 

Evolution process will execute N times generating genomes of 

N generations. In each generation 10 genome copies are 

created and are subjected to the mutation and natural selection 

processes. There are selected candidates for the offspring of 

the next generation from 10 mutated genome copies. From n 

possible candidates only one genome is selected as an 

offspring accordingly to the principles of natural selection. The 

number of genome copies can be changed, but smaller number 

of copies decreases the number of potential candidates of the 

next generation offspring and it will have an impact on the 

evolution results. Than it is less candidates, than is less 

opportunity to choose the best one. 

 

Fig. 5. Definition of evolution parameters. 

An evolution algorithm consists of two main stages: 

genome evolution and structure evolution. Evolution process 

(Fig. 6) repeats N times, i.e. generations. At each generation 10 

copies of the previous generation or initial genome are created 

and are subjected to a mutation process. Genome evolution 
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process can be provoked by following mutation operators 

which rates are set by the user: 

¶ point mutation – an alteration of a single nucleotide in 

the gene sequence; 

¶ nucleotide inversion – a reinsertion of the gene 

segment in the same place but in reverse direction; 

¶ duplication – a duplication of gene sequence that 

results in a link addition; 

¶ deletion – a deletion of the gene sequence that results 

in a link removing; 

¶ inversion – a reinsertion of the gene sequence in 

reverse direction; 

¶ translocation – an exchange of a chromosomal 

segments between two nonhomologous chromosomes. 

To represent the influence of various types of mutations 

that occur in nature, here is offered to establish concordance 

coefficients for each gene that determine on which cases 

network level changes should be introduced. A concordance 

coefficient of each separate gene is calculated comparing the 

acquired gene sequence by nucleotide triplets with the initial 

benchmark-genome corresponding to gene sequence 

(concordance coefficient Rgki comparing to the initial gene 

sequence) and all other genes sequences (concordance 

coefficients Qgkij comparing to all the other genes). 

Concordance coefficient can take values between 0 and 1 

including these thresholds. In case when some of Qgkij >Rgki, 

and one of below accounted conditions are true, it is assumed 

that ith gene has begun to function as a j-th gene that results in 

ith link deletion and j-th link addition in the network structure. 

The higher is essentiality level of process, the stronger 

requirements are defined for gene sequence changes and 

concordance coefficients values. We assume that regulating 

genes of vital processes (1.essentiality level processes) can 

mutate nor more than for 30%, it means, to differ from the 

initial gene sequence, otherwise, an adjustable link in the 

network structure is deleted. Regulating genes of quality 

processes (2.essentiality level) can mutate to 50%. In a case as 

regulating gene sequence changes from 30 to 50%, than 

intensity parameter of adjustable link or node is reduced. If the 

regulating gene sequence mutates more than for 50%, the 

adjustable link is deleted. Insignificant genes may change up to 

80%, otherwise an adjustable link is deleted. In a case as 

regulating gene sequence changes from 50 to 80%, than an 

intensity parameter of an adjustable link or a node is reduced. 

The mutation limits of regulating genes of different essentiality 

level processes can be adjusted to a particular researcher’s 

opinion accordingly to the research purpose. 

              

Fig. 6. Implementation of evolution algorithm. 
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All the mutated genome copies are estimated by each gene 

concordance coefficient comparing it to the initial benchmark-

genome and a set of conditions. Comparing genes of mutated 

genome copies the emergence of the missense and nonsense 

mutations can be checked: 

¶ missense mutation – checking for single nucleotide 

change that results in a codon which codes for a different 

amino acid; 

¶ nonsense mutation – checking for single nucleotide 

change that results in a stop codon. If nonsense mutation 

occurs than the concordance coefficient of corresponding gene 

is reduced by half, ie.
2

Rgki . 

From 10 mutated genome copies, there are selected n 

candidates which probability ratio being chosen for the 

offspring of the next generation depends on the concordance 

coefficient of separate genome gRgk: 

 
k

Rgk

gRgk

k

1i
iä

==  (1) 

where Rgki – a concordance coefficient of an ith gene 

comparing it with the initial gene sequence, 

k – a number of genes in a genome. 

A mutated genome copy cannot be selected as candidate of 

the next generation offspring, if: 

¶ some of the vital genes are mutated more than for 

30% in case of vital and mixed network and/or 

¶ all the quality genes are mutated more than for 50% 

in case of quality or mixed network. 

For the offspring of the next generation there is only one 

candidate chosen from n selected candidates. According to the 

concordance coefficient of each individual gene of the selected 

offspring genome, the network structure changes are generated 

(Fig. 7) that can be the following: link addition, link deletion 

or decreasing/increasing of the link intensity. 

 

Fig. 7. Structure changes.

Under the influence of mutations, the protein amount that is 

introduced by a gene can be reduced. It can influence a rate of 

chemical reaction to, in which protein takes part. For this 

reason the intensity parameter for network links is entered. The 

intensity parameter in case of different importance processes 

can change value by different statistical laws: 

¶ vital processes or links intensity parameter changes 

can be described by a power law, 

¶ quality processes or links intensity parameter changes 

- by a linear law, and 

¶ insignificant processes or links intensity parameter 

changes can be described by a polynomial law. 
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The link addition and deletion displays only the marginal 

network structure states. Hence the introduction of links 

intensity parameter helps to bring out and mark out the 

intermediate states of the network. 

4. Application of the algorithm 

Proposed evolution algorithm of biochemical network 

structure is successfully implemented in modelling and 

analysis tool BINESA (BIochemical NEtwork Structure 

Analyser) and all the stages of proposed procedure of 

biochemical network structure can be performed in this tool. 

To demonstrate results of the network structure evolution, 

that are obtained using software tool BINESA, a medium-scale 

model of Z.mobilis central metabolism (Pentjuss et al., 2013) is 

used. The model includes 81 metabolites, 96 reactions (187 

links) and has average degree - 3.68, average in-degree - 1.83 

and out-degree – 1.85, average number of neighbours is 5.08 

and average clustering coefficient is 0.11. Next example 

demonstrates the influence of inversion on the structure of 

mixed network. 

In this example, the influence of the inversions on the 

Z.mobilis network structure is considered, which includes 16 

vital, 18 qualitative and 62 insignificant reactions. The 

importance of reactions was defined accordingly to the 

produced ATP quantity. 

To get the evolution results, there were 13 simulations 

conducted with 10 experiments at each set. The parameters of 

a simulation were: point mutation and nucleotide inversion 

probability 10
-7

, inversion probability rate within [0.04, 1], 

missense and nonsense mutations were checked. The evolution 

process in all the experiments was interrupted when there was 

no candidate for the next generation offspring, i.e. all the 

mutated genome copies contained at least one defective vital 

gene or no qualitative genes which mutated for more than 30 

% or 50% accordingly. When the inversion probability 

increases the average concordance coefficient values decrease 

and a greater number of genes is damaged. 

At the Fig. 8 are plotted average viability duration (2) 

values and its standard deviation (3). The viability duration 

increases when the inversion probability decreases by a power 

law, but its standard deviation values increase vastly to. 
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where VDi – a viability duration, i.e. the number of the last 

surviving generation, 

i - the experiment number in the experiments set. 

 

Fig. 9 demonstrates changes of the average number of 

reactions where the number of insignificant and quality 

reactions decrease (corresponding genes were deleted or 

corrupted), when the inversion probability rate is less than or 

greater than 20%. But the number of vital reactions remains 

increasing (corresponding genes mainly were not affected), 

when the inversion probability decreases. 

 

 

Fig. 8. Average viability duration dependence on inversion 

probability rate. 

 

Fig. 9. Average number of reactions dependence on 

inversion probability rate. 

5. Conclusion 

An algorithm is offered for evolutionary modelling of 

biochemical network structure that provides possibility to 

connect a genome to the network links and to generate network 

level changes based on alterations that occur during the 

evolution process, implementing genetic mutation operators at 

the genome sequence. The limitation of algorithm is that only 

mutations that do not change the length of gene are 

implemented. The algorithm takes into account different 

importance of biochemical processes and impact of their 

damage by mutations on the viability. The proposed algorithm 

can be used also for dynamic exploration of biochemical 

network during the evolution. 

The produced experiments on the software BINESA where 

the algorithm is implemented demonstrate dependence of the 

number of network reactions, the viability duration of the 

network, the genome concordance coefficient and the 

topological parameters of the network structure on the 

probability of different types of mutations in a Zymomonas 

mobilis central metabolism network. 
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Abstract: The objective of this paper is showing how model predictive control can easily be implemented directly into industrial 

bioreactor automation systems and thus making this control technology accessible to the fed-batch fermentation processes. By 

means of a practical example it is shown how to keep the biomass concentration exactly on its predefined path taking the substrate 

feed rate as the only action variable in a bioreactor that is conventionally equipped with standard measurement devices. The model 

predictive control algorithm uses a very simple general process model the parameters of which are adapted during the cultivation 

process. Additionally the feed rate profile corresponding to the desired biomass profile is used as a scheduling variable to adapt to 

changes in the process dynamics and at the same time for safeguarding 

Keywords: Model predictive control, model adaptation, DCS, E.coli cultivation, recombinant protein production. 

 

1. Introduction 

Complex processes require complex control systems. Some 

fermentation processes can be considered examples for 

processes that require model aided control techniques. In these 

cases model predictive control is probably the most 

sophisticated variant. 

Model predictive control uses a process model to predict at 

every sampling point of the measurement variables the near 

future of the process, across a limited time horizon. For this 

period it computes possible variants of control settings in order 

to determine which one would lead to the best controller 

performance. The best setting is adopted for the next controller 

setpoint. At the following sampling point the procedure is 

repeated and the time horizon is shifted ahead by one time 

increment. This is why the procedure is often referred to as the 

receding horizon technique. Its advantage is that predictable 

changes in the process dynamics can be considered before the 

controller runs into problems. 

MPC has already been discussed with reference to various 

process industries (Maciejowski, 2001; Rossiter, 2003; Qin 

and Badgwell, 2003; Camacho and Bordons, 2004; Dittmar 

and Pfeiffer, 2004, Dittmar and Pfeiffer, 2006; Boudreau and 

McMillan, 2007). The MPC applications for fermentation 

processes were based on rapid prototyping software and 

programmed in Matlab (Jenzsch et al., 2006; Aehle et al., 

2012). The success of the latter suggested a user friendly 

implementation of MPC control strategy into industrial 

distributed control system (DCS, SIMATIC PCS7) in order to 

make this powerful technique generally available to 

fermentation processes.  

Such a technique is conceptionally elegant but depicts the 

difficulty that complex systems required complex models and 

hence the examples reported in literature require a 

considerable effort in model design and real time evaluation. 

This is problematic in practical industrial applications where 

automation systems are employed that are not optimized for 

the online solutions of complex models. Here only simple 

universal process models can be used. In order to make them 

applicable in model predictive controllers, the only way is a 

continuous parameter adaptation in order to compensate for 

modeling uncertainties. Furthermore, the search for the optimal 

controller parameter setting must be simplified. A general 

nonlinear optimizer is not applicable for two main reasons. 

First such software cannot be run in automation systems and 

secondly they would need too much computing power for such 

systems. Hence, the search for optimal control profiles across 

the time horizon must be restricted to paths which are truly 

distinguishable and possible in a given situation. In practice 

this reduces the number of solutions of the model equation to a 

handful of trials. 

This is the general philosophy of the work reported here, 

where it is shown how model predictive control was 

implemented in a standard Siemens SIMATIC PCS7 system 

and applied to E.coli culture producing recombinant proteins. 

2.  Materials and methods 

2.1. Experimental set up 

All fermentation were performed with E. coli BL21(DE3) 

pLysS. Offline measurements were performed with time 

increments of half an hour: Biomass concentrations were 

estimated from at-line OD600 measurements performed with a 

spectral photometer (Shimadzu UV-2102PC). Glucose 

concentrations were quantitatively determined with an YSI-

Glucose analyzer. In both cases, the measurement values 

transferred to the automation system were taken as the mean 

from 3 repetitions. The RMS values of these means were 

estimated to be less than 3%. 

http://dx.doi.org/10.11592/bit.131101
mailto:artur.kuprijanov@biochemtech.uni-halle.de
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The cultivations were performed in a Biostat C 10-L-

bioreactor (B.Braun Biotech International, Melsungen, 

Germany) and operated in the fedbatch mode from the 

beginning. The cells were cultivated in a defined medium. 

Compositions of the initial medium and the feed solution are 

described in detail by (Gnoth et al., 2010). Substrate addition 

rates were controlled gravimetrically using a SIWAREX FTC 

weighing module and a Mettler Toledo balance. An 

autosampler Gilson FC203b was used for automatic and time-

precise sampling of off-line measurements. All other details of 

the experimental set-up were the same as those reported in 

Kuprijanov et al. (Kuprijanov et al., 2012a).  

The cultivation processes were operated under the control 

of a distributed control system Siemens SIMATIC PCS7 V7.1 

using our Bioreactor Control Toolbox (Kuprijanov et al., 

2012b). SIMATIC BATCH is used for the formation and 

configuration for the recipes of fermentation processes.  

2.2. Model used for predictive control 

Most advanced control systems reported in literature use 

the specific growth rate µ as the control variable since this is 

the key physiological variable characterizing the behaviour of 

the cells, i.e., the very bioreactors in a production process (e.g., 

Lee et al., 1989; Shioya, 1992; Yoon et al., 1994; Levisauskas 

et al., 1996; Soons et al., 2006; Wang et al., 2006; Jenzsch, 

2006a). From the product manufacturing perspective, however, 

it is better to control these processes along the corresponding 

biomass concentration profile as pointed out by Jenzsch et al., 

(2006b) as this leads to a better batch-to-batch reproducibility.  

Goal of the proposed control system is, thus, to control 

precisely the developed rational biomass set-point profile 

during the real cultivation by substrate feed manipulation. A 

general process model was used to predict the process behavior 

starting from the current time t across a time period [t, t+Dth]. 

For the usually applied fed-batch process, it was assumed to be 

sufficient to consider the state variables biomass concentration 

X, substrate concentration S and culture volume W only. The 

kinetics was dominated by the specific substrate uptake rate 

and the specific biomass concentration.  
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σmax is the maximum specific glucose consumption rate, KS 

the saturation constant of substrate, Yxs is the growth yield, 

Xmax the biomass concentration that can maximally be 

achieved. Long experiences with these systems and the noise 

levels of the available off- and online process data showed that 

Yxs is an appropriate model parameter that can be used to adapt 

the model uncertainties to the practically appearing process 

data. 

Under normal operating conditions, these fedbatch 

processes run under substrate limitation. Then it can be 

assumed that the substrate fed to the culture is immediately 

consumed by the cells and the actual Yxs can be estimated by 

the current amount of cells and the amount of substrate fed to 

the reactor. The latter is the feed weight cFeed times the 

substrate concentration SF of the solution fed to the cells 
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Using the offline data for biomass and substrate from the 

"golden batch" and the corresponding feed rate and weight 

profiles, the interval can be estimated in which Y'XS is varying 

across the fermentation process. This is depicted in Fig. 1. 

 
Fig. 1. Time-development of the growth yield Y’XS during a 

typical cultivation process controlled with the model 

predictive controller for study S744. 

As shown in the Fig. 1, Y'xs value varies considerably, 

showing that such adaptation is necessary during the 

cultivation. 

The initial model parameters were identified using process 

data from previously performed experiments. For that purpose 

a standard Nelder-Mead Downhill Simplex technique was 

used. (here Matlab’s fminsearch). The resulting model 

parameters are compiled in Table.1. 

 Table 1. 

Overview of model parameters used in the MPC control 

(E. coli bacteria). 

Parameter Value 

Ks 0.986 g kg
-1
 

smax 2.33 g g
-1

 h
-1
 

Xmax 239.5 g kg
-1 

¸ΩXS 0.4-0.27 g g
-1
 

SF 600 g kg
-1
 

The model adaptation method was tested using simulation 

studies of the MPC. It was assumed, that the growth yield 

during the process changes according the profile, observed in 

real experiments. As shown in the Fig. 2 this adaptation 

procedure ensured a good controller performance.  

The optimal biomass and the corresponding feeding 

trajectories for the fermentation process can be obtained 

experimentally using probing control strategy (Åkesson et al., 

1999) or using model based approach described by 

Galvanauskas et al. (Galvanauskas et al., 1998). Very often in 

practice, however, such a setpoint trajectory for biomass and 
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the respective trajectory for the feed rate is taken from an 

experimentally derived operational procedure that is 

considered to be desirable, often referred to as the "golden 

batch".  

 
Fig. 2. Biomass measurement profile (symbols) for 

cultivation S744 and its set point (dashed) and the 

simulation (line) of the model predictive controller using 

the yield adaptation. 

2.3. Keeping the controller simple 

In order to keep the controller as simple as possible, some 

practical heuristic assumptions were made. The first is that the 

number of changes of the action variable, the feed rate, that are 

distinguishable in practice is limited, particularly when the 

feed rate profile of the undisturbed process is given as a 

reference Fref from the golden batch. Hence, an extensive 

optimization using the standard nonlinear numerical 

optimization routines is not necessary. Polling across the 

possible variants is sufficient. Then it is easy to find the best of 

all realistic variants by means of a simple RMS values. 

The integration this process model with MPC algorithm 

and implementation into real time commercial automation 

system is an interesting and actual problem. 

3. Implementation of the MPC 

3.1. Implementation tools 

In the work reported here, SIMATIC STEP7 was used for 

programming the MPC controller module. This is a specialized 

programming languages for PLCs and follows the DIN EN 

61131-3 standard.  

In order to implement the MPC module into PLC, the 

structured control language (SCL) was taken using an 

incremental programming approach. SCL is a Pascal-like high-

level language well suited for the implementation of complex 

algorithms (Berger, 2001).  

The continuous function chart (CFC) language was used 

for logically interconnecting the function blocks, the 

parameterization of all blocks as well as for the configuration 

of program sequences. This language is an appropriate 

instrument to generate the DCS-templates (Pfeiffer, 2007).  

As the controller needs two profiles for the controlled 

variable, in the accompanying example the biomass profile, 

and the corresponding profile of the scheduling variable, here 

the substrate feed rate profile of the golden batch, an 

appropriate tool is required that takes over these data records 

and make them available to the controller module.  

For that purpose a trajectory loading faceplate is designed, 

which allows to write up to 8000 setpoint values (reading 

cycles) for biomass setpoint trajectory and for predefined 

feeding trajectory. This module writes the data directly into the 

CPU's global data block (DB). The MPC function block can 

then easily access these trajectories any time. In this way time 

consuming communications between the MPC and SCADA-

workstation, where such trajectories are usually stored, were 

avoided (Fig. 3). In case of any short blackout of the operator 

station, these profiles are still available and there will be no 

impact on the controller performance.  

 Fig. 3. The picture represents a structure of saving 

biomass setpoint and predefined feeding trajectories 

directly into PLC memory. 

3.2. MPC algorithm and configuration 

The MPC function block for fermentation processes has 

four main functions:  

¶ managing the offline measured data;  

¶ model parameter adaptation;  

¶ solving the model equation;  

¶ solving the optimization problem.  

The algorithmic representation of program functionality is 

shown in Fig. 4. 

3.2.1. Managing the offline measured data 

An important characteristic of current fermentation 

processes is that many key variables such as biomass and 

substrate concentrations are measured offline. These data are 

usually available 15-30 minutes after sampling and the 

measurement values are then made available to the running 

fermentation. As this procedure is usually not available in 

currently used automation systems. Then it becomes important 

supporting this sampling event as well as the uptake of the 

measurement values.  

The offline measurement procedure starts with a 

registration of the actual sampling time. This instant of time is 

stored in the controllers instance data block (IDB) where 

simultaneously space is allocated for the offline measurement 

data to be filled in at a later point in time. The program also 

synchronizes this with the intern cycle at which the current 

online measured data (culture weight and total glucose-feed 

weight) are stored (also in the IDB). 

The reservation procedure can be triggered automatically 

by an automatic sampling device or manually by the laboratory 

personnel using a special "New sample" button. When the 

offline measurement values are available, within 15-30 min 

after sampling, they can be made available to the MPC module 

either via the keyboard or directly from the LIMS system 

installed in the laboratory. The corresponding MPC 

visualisation faceplate is shown in Fig. 5. 
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Fig. 4. Program algorithm of MPC programmed in the 

function block. The general procedure of iterative search of 

optimal feeding trajectory. 

 

 
Fig. 5. Visualisation of the MPC controller in the Simatic 

PCS7 system. With this faceplate the operator can 

manually set a time stamp and automatically allocates 

space for the off-line data to be expected from the sample 

upon its analysis. When these data are available, the 

faceplate allows writing them into that memory elements. 

The new offline measurement values are immediately 

utilized by the running MPC controller. 

3.2.2. Model parameter adaptation 

As explained above the actual biomass yield on substrate 

Y'xs is estimated from the expression 
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When the controller is running the estimate is based on off-

line measurement data at the sample time ts for X and S as well 

as the current online values of reactor's weight W and the 

glucose feed weight cFeed.  

3.2.3. Solving the model equation and determining the 

controller action 

Predicting the process behaviour across the time horizon 

requires numerically solving the model equations. For that 

purpose a simple Euler algorithm was chosen with the time 

increments (9 [s]) of the feed rate profile of the "golden batch" 

deposited in the controller module as described above. This 

method was chosen because of its simplicity and thus its easy 

implementation. It proved to be sufficiently accurate.  

Basis of the controller action is the reference feed rate 

profile Fref(t) stored in the data block of the PLC as described 

before. The MPC controller determines an optimal correction 

DF to this basic profile across the time horizon 

hrefMPC nktktFtktFtktF 2,1,0)|()|()|( =+D°+=+ (3.2) 

For various choices of DF, these feed rate segments are 

used to compute process responses for chosen prediction 

horizon. As the feed pumps do not allow for infinitesimal 

changes of FMPC, only 30 versions of DF within ±10 % around 

the reference feed rate profile were computed. 

The range DF depends on the accuracy and robustness of 

the reference profile Fref as well as of the expected deviations 

from that profile. Clearly, when the deviations are larger than 

10% the controller can only correct for that when its capture 

domain is larger. The value of 10 % was determined from 

numerical simulation experiments.  

Since jumps in the manipulated variable can cause 

disturbances in other critical process variables, for instance in 

the dissolved oxygen concentration in the bioreactor, they were 

avoided by taking an exponential correction approach for DF  

hsetrefMPC NktkttktFtktF 2@ ,1,0))|(exp(1()|()|( =+Ö-+=+ m (3.3)
 

Here the µset values can be changed stepwise in [0...µmax] 

range. As a constraint to FMPC, the pump characteristics were 

taken 

hrefMPCref NkFtktFtktFFtktF 2,1,0)|()|()|( maxmin =D++¢+¢D-+ (3.4) 

As with all other advanced controllers, the MPC is started 

after a fermentation time of 5 [h] only, since up to that time 

instant the data from the process are usually not reliable 

enough as to leading to a better process performance than an 

open loop controller along an exponential growth profile with 

µ<µmax (Jenzsch et al., 2006, Jenzsch et al., 2007). In this 

phase the reference trajectory Fref is taken to control the 

process.  

The MPC controller is activated upon the first offline 

sampling instance ts>5 [h]. The adaptation of Yxs parameter and 

following corrective prediction is carried out when the offline 

measurement values X(ts) and S(ts) are available within the 

automation station. The horizon for this corrective prediction is 

[ts, th], this include the feed rate profile up to current time 
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instant [ts, t]. For the rest of the time horizon 30 different 

variants for DF(t, th) were taken. From the variants computed 

with these feed rate profiles, the one with the least deviation 

between the corresponding biomass and its setpoint profile 

segment is taken for control. Even from this profile only the 

feed value for the current time t is sent to the feeding valve. 

Upon each such cycle, the time horizon is then shifted 9 [s] 

ahead and the procedure is repeated for time horizon [t, th]. For 

that new cycle the initial values for the predictions were taken 

from the last optimal X biomass trajectory. The additional 

information in this cycle comes from the shifted biomass 

setpoint profile within the new time horizon. This will lead to a 

slightly different optimal feeding profile within that time 

interval t≤th. 

The duration of the receding time horizon was chosen to 

1 [h]. This value was derived from simulation studies made 

beforehand and was compared experimentally with other 

variants [0 .. 2 h]. An adaptation of the model was also made 

hourly. Within the last hour, the time horizon shrinks until its 

time span is zero at 18 [h] fermentation time. Finally, the time 

steps for the controller cycle was chose to be the same as the 

time increment for storing the online measurements. 

If an unexpected disturbance occurs during the cultivation 

process, there is a possibility to switch MPC controller into the 

safe open-loop operation mode. In that case the feeding 

reference trajectory Fref will be taken to finish the fermentation 

process. In the case of an abnormal or missing offline 

measurement the controller doesn't activate the model 

adaptation function and waits for the next automatic or manual 

sampling action. 

4. Results and discussion 

The proposed model predictive control procedure was 

implemented into our BioPAT library and run in our Siemens 

SIMATIC PCS7 automation system to control E.coli culture. 

 The controller is able to keep the process well within its 

specification limits. From the manufacturing perspective, 

however, the controller performance is importantly 

characterized by the batch-to-batch reproducibility that can be 

assured with such a controller and which clearly sets out the 

process quality. This way of performance quantification can 

best be appraised by plotting several MPC-controlled 

fermentation runs into a common plot. Fig.6 shows 5 such 

validation runs. Obviously the controller works perfectly over 

the entire fermentation process control time. The absolute 

deviations shown in the lower part of the plot clearly 

demonstrate the very good batch-to-batch reproducibility 

obtained with the MPC. 

The upper graph (Fig. 6) shows the data for the controlled 

variable, the lower one the absolute deviations of the 

validation runs from the set points. The symbols are the same 

in both plots. An important point to note here is that this 

process performance could be obtained with a minimum of 

measurement expenses. Comparably good batch-to-batch 

reproducibility was previously only obtained by controlling the 

total mass of carbon dioxide produced (tcCPR-Control), e.g, 

Jenzsch et al. (Jenzsch et al., 2007). That approach required 

measurements of the carbon dioxide volume fraction in the 

vent line of the fermenter and thus an offgas analysis that is 

not generally available at production fermenters. For the MPC 

controller, only the offline measurements of biomass via OD 

measurements and substrate concentrations measurements via 

(glucose analyzers) are needed. These measurements are being 

performed at most production reactors. The only online 

measurements that are used are feed rate and culture weight. 

While the former is generally measured, the balance needed to 

measure the second one is sometimes not directly available and 

then needs to be estimated from the added mass of substrate 

and the initial culture weight. 

 

Fig. 6. Results of 5 validation runs for the proposed MPC 

controller together with the set point profile which was 

taken from a previously optimized fermentation (Study 

S704).  

5. Conclusion 

In conclusion, the most important results of the work 

behind this report are: 

¶ A simple but powerful version of an adaptive model pre-

dictive controller was developed and tested in many real 

fermentations on the laboratory scale. 

¶ The corresponding software was developed in form of a 

module for the generally applicable professional automa-

tion system Siemens SIMATIC PCS7 and is thus portable 

(including its faceplates) to other cases of applications of 

this software. 

¶ The implementation of the model predictive controller 

was constructed without utilizing external general pur-

pose computing elements. The algorithms were directly 

implemented in the automations system thus avoiding 

complex synchronization expenses for external software.  

¶ An appropriate way of handling offline measurement data 

together with the corresponding online measurements 

was an essential hurdle during the development. This was 

solved in a simple way. 

¶ A priori information about changes in the process dynam-

ics could be extracted from the substrate feeding profiles 

of the "golden batch" from which the rational biomass 

setpoint profile of the process was taken. 
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Abbreviation List  

MPC Model Predictive Control 

DCS  Distributed Control System 

SCL  Structured Control Language 

CFC  Continuous Function Chart 

DB  Data Block 

IDB  Instance Data Block 

SCADA  Supervisory Control and Data Acquisition 

LIMS  Labour Information's Management System 

RMS Route Mean Square 

tcCPR  Total Cumulative Carbon Production Rate 
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Abstract: Mathematical modelling and simulation can aid the analysis and design of gene regulatory networks (GRNs). GRN 

modelling approaches can be divided into two major categories, deterministic and stochastic. In this paper we present a new 

algorithm for GRN modelling called hybrid discrete algorithm (HDA). It introduces stochastic effects into an underlying 

deterministic approach and is based on implicit rules that make modular, bottom-up modelling possible, without having to derive 

specific network equations. The algorithm explicitly models competitive binding of activators and repressors to the same binding 

site. Furthermore, it takes into account a limited number of binding site repeats. We demonstrate and validate the algorithm on the 

repressilator model. 

Keywords: Gene regulatory networks, gene expression modelling, competitive binding, fractional occupancy, repressilator. 

 

1. Introduction 

Gene regulatory networks (GRNs) play a central role in 

synthetic biology as they enable the modification of existing 

and realization of novel cellular logic (Voigt, 2006). While 

many approaches for GRN modelling exist, two major ones are 

deterministic and stochastic (Kaern, et al., 2003). Deterministic 

models can be based on ordinary differential equations 

(ODEs), which make the use of analytical techniques possible. 

Stochastic models are, on the other hand, typically established 

with a Chemical Master Equation (CME), which can be solved 

numerically with different approaches, such as a stochastic 

simulation algorithm (SSA) (Gillespie, 1976). Deterministic 

models can be used to describe a time average of cell 

population dynamics, while computationally more demanding 

stochastic models are needed to capture the behaviour of a 

single cell (Kaern, et al., 2003). The dynamics obtained with 

the deterministic and stochastic models can converge if mRNA 

and protein concentrations are high, cell volumes are large and 

promoter kinetics are fast (Kaern, et al., 2005). 
Usually, these models are formulated on a per-GRN basis 

using a top-down approach. Furthermore, phenomena such as 

transcription factor binding and competitive binding are often 

not explicitly modelled. To address some of these issues, we 

present the hybrid discrete algorithm (HDA) for GRN 

modelling. The algorithm assumes high mRNA and protein 

concentrations and that transcription factor binding is much 

faster than transcription and translation, which is often the case 

in observed systems. 

2. Hybrid discrete algorithm 

2.1. Algorithm overview 

HDA is a hybrid algorithm because it introduces the 

stochastic effects to an otherwise fundamentally deterministic 

gene expression modelling approach. The algorithm is discrete 

in a sense that it represents the species concentrations, which 

are evaluated in discrete time steps, as integers. In contrast, 

deterministic ODE models typically operate with real numbers 

in continuous time and space (Shmulevich and Aitchison, 

2009). 

Modelling using HDA consists of two major steps. First, 

each GRN is defined as a collection of its fundamental 

building blocks, or entities. These are genes, promoters, 

transcription factor binding sites, mRNA molecules and 

protein molecules that can also act as transcription factors. 

Each entity has a set of parameters that define its behaviour, 

e.g. gene transcription rate or protein degradation rate. 

Relationships such as gene repression or activation are also 

specified. A simulation of the GRN dynamics is carried out as 

a finite sequence of discrete time steps. Internal rules are used 

to determine the number of mRNA and protein entities at each 

time step. Specifically, at each time step: 

¶ the effects of potential input signals are considered 

(e.g. the presence of molecular signals may facilitate 

transcription factor binding); 

¶ transcription factors bind to their target binding sites; 

¶ transcription, translation and species degradation 

occur. 

This approach allows the modular GRN modelling and can 

be implemented using object-oriented programming, where 

each entity exists as an individual object. Formulation of 

specific GRN system equations or chemical reactions can thus 

be avoided.  

2.2. Data model 

The algorithm was implemented in C#. The following 

classes are defined: mRNA, Protein, Product, BindingSite, 

Promoter and Gene. 

Classes mRNA and Protein define an individual mRNA and 

protein entity, respectively. They have the following attributes: 

http://dx.doi.org/10.11592/bit.131001
mailto:dusan.vucko@comtrade.com
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¶ int tB – entity birth time, i.e. time step when the entity 

was generated; 

¶ bool Alive – when this value is true, the entity is 

active in the system; the value is set to false once the entity has 

been  marked for degradation. 

 

Class Product associates mRNA species with certain 

protein species and has the following attributes: 

¶ List<mRNA> mRNAs – a list of mRNA entities; 

newly transcribed mRNA entities are added to this list and 

removed from it once marked for degradation; 

¶ List<Protein> Proteins – a list of protein entities; 

newly translated protein entities are added to this list and 

removed from it once marked for degradation; 

¶ int T – translation rate, i.e. the number of protein 

entities to produce per mRNA entity; 

¶ int τD – transcription-translation delay, i.e. the number 

of time steps that must elapse between transcription and 

translation; 

¶ double qM – mRNA degradation rate, i.e. the 

percentage of active mRNA entities to degrade at each time 

step; 

¶ double qP – protein degradation rate, i.e. the 

percentage of active protein entities to degrade at each time 

step. 

 

Class BindingSite defines an individual transcription factor 

binding site and has the following attributes: 

¶ int C – binding site capacity, i.e. the number of 

binding site repeats; 

¶ int ὄ  – the number of activator entities bound to this 

binding site; 

¶ int ὄ ɀ the number of repressor entities bound to this 

binding site. 

 

Class Promoter defines an individual promoter. It has the 

following attributes: 

¶ PromoterType Type – a promoter type that can be 

either minimal or constitutive; 

¶ List<BindingSite> BindingSites – a list of binding 

sites associated with the promoter; 

¶ int KA, KR, b0, b1, k, z, a, r – constants that regulate 

transcription rates of genes associated with the promoter (see 

2.4. for complete description). 

 

Class Gene defines a gene and has the following attributes: 

¶ Promoter PG – gene promoter; 

¶ double n, m  – non-linearity coefficients used for 

transcription modelling. 

2.3. Modelling the binding of transcription factors 

HDA can explicitly model competitive binding of an 

activator and a repressor to the same binding site that affects 

the corresponding promoter activity. Let B be a binding site 

with C repeats, i.e. with capacity C. A single activator or 

repressor entity can bind to each binding site repeat. The sum 

of all repressor and activator entities bound to a binding site is 

never greater than the binding site’s capacity: 

 

 ὄ ὄ ὅȢ (1) 
Suppose that in a time step t, the number of activators and 

repressors that bind competitively to the same binding site is A 

and R respectively. If ὃ Ὑ ὅ, they are distributed among 

the available binding site repeats according to the equations: 

 ὄ ὅϽ
Ͻ

Ͻ Ͻ
, (2) 

   

 ὄ ὅϽ
Ͻ

Ͻ Ͻ
, (3) 

where ύ  and ύ  are the weights specifying the activator and 

repressor binding affinity, respectively. Note that ὄ  and ὄ  

are integers, hence rounding is used. If we assume equal 

binding affinity, then ύ ύ ρ and a uniform distribution 

of competing transcription factors is obtained. This way, the 

amount of bound transcription factors is proportional to their 

available concentrations (i.e. the number of all existing 

entities). If ὃ Ὑ ὅ, all available activator and repressor 

entities can bind to the available binding site repeats, i.e. 

ὄ ὃ and ὄ Ὑ. In case of non-competitive binding, 

ὃ π if only repressor binds to B; similarly, Ὑ π if only 

activator binds. 

2.4. Gene expression modelling 

To each gene in a GRN, a promoter and a list of mRNA 

entities are assigned. The list, which contains all mRNA 

entities that exist at a specific point, can be shared among 

multiple genes. Each mRNA species is associated with a 

specific protein species represented as a list of protein entities. 

When an mRNA entity is translated, a new protein entity is 

added to the list of protein entities. A transcription-translation 

delay can be specified as a number of time steps that must 

elapse after an mRNA entity has been generated and before the 

corresponding protein is generated. 

The gene transcription rate is regulated by the binding of 

transcription factors to the binding sites associated with their 

promoters. HDA presumes two different types of promoters, 

minimal and constitutive. Binding of an activator is required to 

achieve a significant increase of transcription rate of genes 

regulated by a minimal promoter, as RNA polymerase has low 

binding affinity for it. In contrast, genes under a constitutive 

promoter are transcribed even in the absence of transcription 

factors. Binding of a repressor, however, decreases the 

transcription rate, ideally to zero, effectively turning the genes 

off. However, in realistic experimental settings, a certain 

amount of leaky transcription is present despite the bound 

repressor.  

Transcription is modelled as follows. At each simulation 

time step t, activation intensity ὃ  and repression intensity Ὑ  

are calculated for each gene: 

 ὃ Вὄ , (4) 
   

 Ὑ Вὄ , (5) 

 where ὄ  and ὄ  are the total number of bound activator, 

respectively repressor, entities on the gene promoter’s binding 

site i. Hence, activation, respectively repression, intensity is 

the sum of all activator, respectively repressor, entities bound 

to gene promoter’s binding sites.  

Next, the number of mRNA entities (ὔ ) to generate at 

time step t is determined for each gene in the GRN. Note that 

rounding is used as ὔ  is a non-negative integer. Two 

distinct situations are possible based on the promoter type. In 

case of a minimal promoter: 

 

ὔ ὦ ὦ ὦϽ
ὶϽὙ

ὑ ὶϽὙ
Ὧ

Ͻ
ὥϽὃ

ὑ ὥϽὃ ὶϽὙ
 

(6) 
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where: 

¶ ὦ, ὦ and Ὧ are transcription rate constants of genes 

regulated by the minimal promoter; 

¶ ὶ is an association constant between a repressor and a 

binding site; 

¶ ὥ is an association constant between an activator and 

a binding site; 

¶ ὲ and ά are non-linearity coefficients; 

¶ ὑ  and ὑ  are constants that specify repression and 

activation threshold, respectively – the  quantity of activator 

and repressor entities required to achieve a certain 

transcription rate. 

Leaky transcription rate (ὦ) represents the minimal 

transcription rate that is present even when the promoter  is 

strongly repressed. Ideally, ὦ π. When no transcription 

factors are bound (i.e. ὃ Ὑ π), transcription rate equals 

ὦ ὦ. Here, ὦ is transcription rate that can be eliminated by 

a repressor binding. Although low transcription is expected, 

binding of a repressor can further decrease the transcription 

rate. Maximal transcription rate attainable is ὦ ὦ Ὧ and 

is reached only when a sufficient amount of activator entities 

and no repressor entities are bound to a promoter’s binding 

sites. Normally, we assume ὦḺὯ and ὦḺὯ. In the absence 

of transcription factors, each gene under a minimal promoter 

will be transcribed at a relatively low rate that equals ὦ ὦ 

(ideally 0, i.e. no transcription takes place at all).  

The described transcription modelling approach is 

inherently deterministic and stems from a basic fractional 

occupancy model of gene expression (Sauro, 2012). To derive 

equation (6), let us assume a minimal promoter with a single 

binding site repeat to which either an activator or a repressor 

entity can bind exclusively. The promoter is in an active state, 

i.e. state leading to transcription of genes under its control, 

only when an activator is bound. Three states are possible: 

¶ Ὗ – neither an activator nor a repressor is bound to the 

binding site (binding site is unoccupied), hence the promoter is 

inactive; 

¶ Ὗ  – a repressor R is bound to the binding site, hence 

the promoter is inactive; 

¶ Ὗ – an activator A is bound to the binding site, hence 

the promoter is active and transcription occurs. 

The probability of an active promoter is expressed as its 

fractional occupancy: 

 

 Ὢ . (7) 

 

Transitioning between the three promoter states can be 

described with the reactions: 

 

 
 

(8) 

 
 

(9) 

Assuming that binding and unbinding of transcription 

factors occurs at a much higher rate than transcription, 

equilibrium is reached. According to the law of mass action, 

we write: 

 ϽὟϽὃ ϽὟ , (10) 
   

 ϽὟϽὙ ϽὟ . (11) 
 

It follows that: 

 Ὗ ϽὟϽὃ ὥϽὟϽὃ, (12) 

 Ὗ ϽὟϽὙ ὶϽὟϽὙ. (13) 

 

Fractional occupancy can now be expressed as: 

 Ὢ
ϽϽ

ϽϽ ϽϽ

Ͻ

 Ͻ Ͻ
, (14) 

 

which we generalize to: 

 Ὢ
Ͻ

 Ͻ Ͻ
. (15) 

 

If we multiply the obtained expression with a constant Ὧ, 

which represents maximal attainable transcription rate, we can 

– in the context of HDA – interpret the result as a number of 

mRNA entities to produce in a time step: 

 

 ὔ ὯϽ
Ͻ

Ͻ Ͻ
, (16) 

 

which is equal to the last term in (6). Even if leaky 

transcription rate ὦ is introduced as an additional term, the 

problem with formulation (16) is that in general, it doesn’t 

distinguish between a transcription rate when no transcription 

factors are bound (i.e. ὦ ὦ  and a transcription rate when 

no activator is bound and the promoter is fully repressed 

(i.e. ὦ . Both situations can be represented simply as an 

inactive promoter. For this reason, we include the additional 

terms: 

 

 ὦ ὦϽ
ὶϽὙ

ὑ ὶϽὙ
 (17) 

 

that become relevant especially if the difference between ὦ 

and ὦ is relatively large. Note that this can be rewritten as the 

equation 

 

  ὦϽρ
Ͻ

Ͻ
ὦϽ 

Ͻ
, (18) 

 

which equals the Hill function of a repressor if ὶ ρ and 

Ὑ Ὑ denotes repressor concentration. 

We have described the HDA implementation of 

transcription model for genes regulated by a minimal promoter 

(equation (6)). However, HDA can also model constitutive 

promoters. The number of mRNA entities to generate for each 

gene regulated by a constitutive promoter is calculated as: 

 

 
ὔ ὦ Ὧ ὯϽ

Ͻ

Ͻ
ᾀϽ

Ͻ

Ͻ Ͻ
, 

(19) 

 

where ὦ is a leaky transcription rate and Ὧ is normal, 

constitutive transcription rate that takes place when no 

repressor is bound. Bound repressor entities can significantly 

lower the transcription rate and result in Ὧ π. If activator 

binding sites are also associated with the constitutive promoter, 
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binding of an activator can increase the transcription rate for a 

maximum of ᾀ. Hence, maximal transcription rate is 

ὦ Ὧ ᾀ. Normally, we assume ὦḺὯ. 

Once ὔ  has been determined, it is - regardless of the 

promoter type - either increased or decreased by Ϸ: 

 

 ὔ ὔ Ͻὔ , (20) 
 

where ὔ  is the final amount of mRNA entities to produce 

for a given gene at step t ,  is uniformly distributed random 

variable from an interval ‗ȟ‗ and ‗ is transcription 

stochasticity percentage. 

Translation is modelled probabilistically, i.e. at each 

simulation step, for each existent mRNA entity, T protein 

entities are produced with translation probability ὖ 

(a uniform distribution is used) if a delay between 

transcription and translation has already elapsed.  

Protein and mRNA entities have a degradation rate 

parameter. At each time step, ήϷ of existent mRNA entities 

and ήϷ of existent protein entities are degraded, i.e. removed 

from the system, where ή  is mRNA degradation rate and ή 

is protein degradation rate. 

3. Sample model (repressilator) 

The repressilator (Fig. 1) can be realized with a GRN 

consisting of three genes that mutually repress one another: 

each gene encodes a repressor for another gene (Elowitz and 

Leibler, 2000). Conditions exist where concentrations of the 

three repressors oscillate. We model the repressilator using 

HDA with the following experimental parameter values: each 

binding site has a capacity ὅ ςπ. Each gene under a 

constitutive promoter has a transcription rate constant Ὧ ρπ; 
no leaky transcription is assumed (ὦ π). Translation rates of 

mRNA species are Ὕ ρ. Non-linearity coefficient is ὲ ς, 

with constants ὑ τ and ὶ ρ. Degradation rates are 

ή πȢτυ for mRNA species and ή πȢρ for protein 

species. Transcription stochasticity is set to ‗ πȢχυ and 

translation probability to ὖ πȢω. Parameter values are 

chosen in a way to comply with theoretical requirements for 

oscillatory behaviour, namely strong promoters, high non-

linearity coefficient and low leakiness. Activation-related 

parameters are irrelevant since no activators are present in the 

system. No transcription-translation delay is assumed. 

Simulation results of the model are shown in Fig. 2 and 

capture the main dynamics (i.e. oscillatory behaviour) in 

accordance with deterministic models in the relevant literature. 

 

 
Fig. 1. Repressilator consists of three genes (R1, R2, and 

R3) under constitutive promoters (p1Con, p2Con, p3Con) 

with a single repressor binding site ([R1], [R2] and [R3]). 

Concentrations of repressors encoded by R1, R2 and R3 

can oscillate under certain conditions. 

 
Fig. 2. Simulation results of an HDA repressilator model 

demonstrating oscillatory behaviour. Number of repressor 

protein entities is shown as a function of time (i.e. discrete 

time steps). Initial amounts of repressors are ╡ , 

╡  and ╡ Ȣ No absolute parameter units are 

used - obtained characteristics, such as species 

concentrations and a period of oscillations, must thus be 

interpreted in relative terms. 

4. Conclusion 

The introduced hybrid discrete algorithm is suitable for 

modelling of GRNs where explicit formalization of 

transcription factor binding is desired, such as competitive 

binding of an activator and a repressor to the same binding 

site, which is crucial for implementing desired cellular logic in 

some networks. The algorithm enables modular, bottom-up 

modelling of GRNs and is designed with object-oriented 

programming implementation in mind. 

While the algorithm uses stochastic elements, it is 

deterministic at its core, unlike inherently stochastic gene 

expression in realistic cellular environments. For this reason, 

the algorithm is only suitable for describing major GRN 

characteristics under deterministic modelling assumptions. It 

should also be noted that the output of the algorithm is highly 

dependent on the parameter values, evaluation of which may 

often be difficult due to e.g. lack of experimental data. 
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Abstract: Autism spectrum disorders are early childhood neurodevelopmental disorders, it is not a disease but rather a syndrome 

that is characterized by a multifactorial type of inheritance and a rapid annual increase in prevalence. In some cases autism spec-

trum disorders are one of the symptoms of monogenic or chromosomal pathology, and can also be a symptom of inherited metabol-

ic disorders. 

A reconstruction of human mitochondrial metabolic network has been used to model insufficiency of some genes encoded proteins 

to observe the consequences at metabolic network scale and propose approaches for the development of diagnostics. Flux variabil-

ity analysis of mitochondrial metabolic network reconstruction is performed maximizing ATP production. It is found that deletion 

of SUCLG2 gene reduces the maximal production of ATP by 50% with wide flux variability range for most of reactions. Deletion of 

gene SLC25A12 reduces the maximal ATP production just by 1% but the new state is very fragile as most of reactions have very 

narrow flux variability range and any disturbance would cause reduction of ATP production that can not be compensated by other 

reactions. Detection of insufficiency of genes SUCLG2 and SLC25A12 is suggested by observing of fluxes of specific reactions 

found by flux variability analysis. 

The reactions with non-overlapping flux variability range can be very informative for the diagnostics of deficiency of particular 

gene. Still the experiments demonstrated that there are just few reactions with non-overlapping range. The analysis of wide flux 

variability range in case of deletion also can be perspective as detection of zero flux could be easier task for experimental 

detection. Pathway scale analysis could bring new constraints for improvement of the model and increase the number of reactions 

with non-overlapping flux variability range. 

Keywords: Autism spectrum disorders, constraint based reconstruction, mitochondrion, flux variability analysis, modeling. 

 

1. Introduction 

Autism spectrum disorders (ASD) are serious early child-

hood neurodevelopmental disorders with unknown etiology 

and a rapid annual increase in prevalence. ASD are a broad 

phenotype including less severe disorders (Johnson and Myers, 

2007). ASD are clinically characterized by impaired social and 

communication skills, hyperactivity and attention deficit, ste-

reotypic movements and interests, stereotypic rituals, emotion-

al disturbances, and varying degrees of expressive and recep-

tive language development disorders (Risch et al., 1999). 

ASD is not a disease but rather a syndrome that is charac-

terized by a multifactorial type of inheritance. In some cases, it 

is one of the symptoms of monogenic or chromosomal pathol-

ogy, and can also be a symptom of inherited metabolic disor-

ders. In early childhood, the latter can manifest primarily with 

autistic behavior, speech development delay or regression, and 

mental retardation. This collection of symptoms should be 

classified as ASD (Gillberg, 2006).  

One of the first hypothesis about mitochondrial dysfunction 

associated with ASD was published in 1998 by Lombard 

(Lombard, 1998). Mitochondria are cell structures, which have 

role in the several functions in cell: ATP synthesis, fatty acid 

oxidation, heme biosynthesis, heat generation, calcium homeo-

stasis, citric acid cycle and apoptosis (Koopman et al., 2012). 

Hypothesis was based on the frequently observed lactic acido-

sis and carnitine deficiency in patients with ASD. With a rough 

study based on the elevation of the lactic acid and morphologi-

cal criteria on the muscle biopsy in the ASD patients, research-

ers established prevalence of mitochondrial dysfunction in 

ASD group. That was 7.2% (Oliveira et al., 2005). In the clini-

cal review of the patients with mitochondrial dysfunction it 

was concluded, that in 25 of them primary diagnosis was ASD. 

The most common defect was decreased activity of complex I 

(Weissman et al., 2008). 

Rossignol et al. in the paper of the meta-analysis concluded 

that mitochondrial dysfunction is the most common metabolic 

abnormality associated with ASD. It was estimated to be 5%, 

when compared to the general population of 0.01%. Most of 

the identified cases were not associated with genetic abnormal-

ities in mtDNA, but resulted most probably of the secondary 

http://dx.doi.org/10.11592/bit.131102
mailto:oskars.rubenis@gmail.com
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mitochondrial dysfunction (Rossignol and Frye, 2012). Post-

mortem brain biopsies in ASD patients showed decreased 

Complex I and Complex IV activities (Tang et al., 2013).  

Significant input in the ASD research comes from the ge-

nome wide analysis, which helped to reveal or confirm some 

strong ASD candidate genes also involved in the mitochondrial 

metabolism. Gene SUCLG2 was described as significantly 

associated with ASD from the genome wide analysis of the 

exonic copy number variants (Bucan et al., 2009). Two single 

nucleotide polymorphisms (SNPs) that showed evidence for 

divergent distribution between autistic and nonautistic subjects 

were identified, both within SLC25A12, a gene encoding the 

mitochondrial aspartate/glutamate carrier (AGC1). In the sec-

ond stage, the two SNPs in SLC25A12 were further genotyped 

in 411 autistic families, and linkage and association tests were 

carried out in the 197 informative families. A strong associa-

tion of autism with SNPs within the SLC25A12 gene was 

demonstrated (Ramoz et al., 2004).  However conflicting re-

sults were obtained in the group of ASD patients from Protu-

gal. They found no evidence of SLC25A12 gene involvement 

is responsible of hyperlacticidemia reported previously 

(Correia et al., 2006). 

The above mentioned studies indicate necessity to discover 

the mechanisms of ASD at metabolic level. Modeling can be 

one of tools for the studies of complicated mechanisms apply-

ing different modeling approaches (Stelling, 2004). Recon-

structions of metabolic networks represent stoichiometrically 

balanced reactions that are possible in particular organism 

based on genome annotations, literature, experimental and 

other data. Reconstructions do not include data about the kinet-

ics of reactions and concentrations of metabolites. Addition of 

numerical information about particular environment and or-

ganism state characteristic upper and lower limits of reaction 

fluxes transforms the reconstruction into a state and environ-

ment specific model. The behavior of model then can be com-

pared to experimental data. More than 50 genome-scale recon-

structions and models of metabolism of different organisms 

have been developed in last decades (Oberhardt et al., 2009). 

Protocols for their development of reconstructons have been 

published as well (Thiele and Palsson, 2010). Reconstructions 

for a number of human tissues have been developed (Agren et 

al., 2012). The recent achievement in reconstruction building is 

the Recon2 (Thiele et al., 2013) which can be used for studies 

of human physiology and pathology (Bordbar and Palsson, 

2012). 

Also human mitochondrion has been reconstructed and 

modeled. The most comprehensive mitochondria devoted re-

construction so far has been published (Vo et al., 2004) im-

proved and analyzed afterwards (Thiele et al., 2005; Vo, 

2007). There are also available dynamic models of mitochon-

dria with limited scope of reactions (Bertram et al., 2006; Wu 

et al., 2007). 

To make in silico experiments with reconstruction based 

human mitochondrial model (Thiele et al., 2005) we used CO-

BRA Toolbox v2.0 (Schellenberger et al., 2011) for Matlab. 

COBRA is used for analysis of metabolic models, signaling 

models and even genome scale reconstructions of different 

organisms. The models contain necessary metabolites and re-

actions, for the specific organism. The necessary biological 

and environmental constraints can be found in different scien-

tific literature, databases or by laboratory experiments. 

The analysis of models and reconstructions are based on 

different methods like Flux Balance Analysis (Orth et al., 

2010), Flux Variability Analysis (Burgard et al., 2001; 

Kostromins, 2012). With Flux Balance Analysis (FBA) it is 

possible to find out the best possible flux solution in the model 

for particular objective function, for example fat synthesis in 

adipose tissue from glucose (Fell and Small, 1986). Although 

this method shows only one of the many best solutions, it is 

very fast calculation method and takes only few seconds to get 

the results (Orth et al., 2010). Flux Variability Analysis (FVA) 

shows minimum and maximum flux of reactions in the net-

work to maintain some state of the network (Gudmundsson 

and Thiele, 2010). It is quite informative method when there is 

need to find out not exact state of metabolism, but complete 

solution space has to be scanned for analysis purposes. Alt-

Fluxes toolbox for COBRA (Kostromins, 2012) performs Flux 

Variability Analysis with a user friendly interface, and results 

are visualized and easier interpretable. Combination of differ-

ent methods gives additional opportunities (Lewis et al., 2012). 

The described approaches can be used to analyze the conse-

quences of different changes in the network, including gene 

insufficiency or deletion. 

In this study the impact of insufficiency of two possibly au-

tism related genes SLC25A12 (Correia et al., 2006; Ramoz et 

al., 2004) and SUCLG2 (Bucan et al., 2009) are examined by 

methods of stoichiometric analysis to find out the metabolical-

ly traceable side effects of deficiency in genes encoded pro-

teins that could be easily observable thus enabling diagnostics 

and determination of cause-effect relationships. Analysis is 

performed mainly using COBRA Toolbox2 (Schellenberger et 

al., 2011) for Matlab. The diagnostics of insufficiency of genes 

SLC25A12 and SUCLG2 is suggested by analyzing parts of 

metabolic pathways found by constraint based modeling. It is 

found that deletion of gene SLC25A12 reduces the maximal 

ATP production just by 1% while deletion of SUCLG2 in the 

model reduces the maximal production of ATP by 50%. 

2. Materials and methods 

In this study the human mitochondrial metabolic network 

reconstruction developed in Palsson Lab is used (Thiele et al., 

2005). This reconstruction is extension of earlier work of the 

same group (Vo et al., 2004). Reconstruction of mitochondrion 

in our study consists of 225 biochemical reactions and 235 

metabolites (121 mitochondrial, 89 cystolic, and 25 extracellu-

lar). Involved metabolites and their coding genes were cross-

referenced with scientific publications about autism and autism 

spectrum disorders and publicly available databases (AutDb, 

(http://autism.mindspec.org/autdb/Welcome.do) Ndar 

(http://ndar.nih.gov). In all calculations μmol/min/g of proteins 

is used as flux measurement unit as it was done in the initial 

model (Thiele et al., 2005). Two genes SLC25A12 (Correia et 

al., 2006; Ramoz et al., 2004) and SUCLG2 (Bucan et al., 

2009) were associated with ASD and found in the reconstruct-

ed metabolic network, thus exclusion criteria was not devel-

oped. The names of reactions are associated with reactions and 

metabolites as in the supplementary material 1 based on the 

earlier published reconstruction (Thiele et al., 2005). The sup-

plementary material 1 is an excel file in COBRA readable for-

mat and can be opened using function xls2model. 

Gene SLC25A12 (solute carrier family 25 (aspar-

tate/glutamate carrier), member 12) is localized on chromo-

some two long arm locus 24, and its coded protein is involved 

http://autism.mindspec.org/autdb/Welcome.do
http://ndar.nih.gov/
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in the exchange of  Ca(2+)-bound aspartate for glutamate 

across the inner mitochondrial membrane. Knock-out mice for 

the gene SLC25A12 model showed global cerebral hypo-

myielination (Jalil et al., 2005).  

Gene SUCLG2 (succinate-CoA ligase, GDP-forming, beta 

subunit) spans on the chromosome three short arm region 14.1 

and it encodes beta subunit of succinyl-CoA synthethase, 

which catalyzes a reversible reaction involving energy produc-

tion through ATP or GTP. Phenotype data for the haploinsuffi-

ciency of the gene is not available, however alpha subunit de-

ficiency can cause severe lactic acidemia (Ostergaard et al., 

2007). 

The studied genes are encoding enzymes of reactions rep-

resented in the reconstruction. The gene SLC25A12 corre-

sponds to the reaction ASPGLUm and gene SUCLG2 corre-

sponds to the reaction SUCCOASm. 

Flux variabaility analysis (Gudmundsson and Thiele, 2010) 

is performed using COBRA 2 Toolbox for Matlab 

(Schellenberger et al., 2011) and AltFluxes toolbox 

(Kostromins, 2012) for COBRA to calculate and visualize the 

flux variability range. The flux variability analysis is calculat-

ed for a particular state of a network. In this study it is calcu-

lated for maximal ATP production rate (reaction DM_atp(c)). 

Upper and lower bounds of all steady state reaction fluxes can 

be determined using flux variability, where setting objective 

function flux for maximal value, each reaction flux is mini-

mized and maximized to find steady state bounds.  

Hypergraph layouts for visualization of gene deletion ef-

fects on steady state flux distributions are made using 

Paint4Net toolbox for COBRA (Kostromins and Stalidzans, 

2012). 

3. Results and discusion 

Three cases of ATP production (reaction DM_atp(c)) max-

imization are investigated in this research by flux variability 

analysis: 1) unaffected model (Thiele et al., 2005), 2) deletion 

of reaction ASPGLUm corresponding gene SLC25A12 and 3) 

deletion of reaction SUCCOASm corresponding gene SU-

CLG2. The deletion is implemented as setting the upper and 

lower bounds of reactions to zero for particular reaction.  

Flux variability analysis (FVA) is performed with AltFlux-

es toolbox (Kostromins, 2012). The results are summarized in 

different sheets of supplementary material 2. The FVA results 

of all reactions are summarized in sheet ”All_data”.  

Some reactions are considered as not informative because 

of no changes or small changes of flux variability range be-

tween three simulated cases and therefore are excluded from 

further analysis. 60 reactions with flux variability range chang-

es between unaffected and two gene deletion cases experi-

ments more than 5 units are selected for further analysis. Their 

values for all three cases are summarized in Fig. 1 and in the 

sheet “Analysis” of Supplementary materials 2. 

3.1. Comparison of deletion of reaction ASPGLUm 

corresponding gene SLC25A12 with unaffected case 

model 

The deletion of SLC25A12 gene causes small reduction in 

the network ability to maximize ATP production compared to 

unaffected case model. The maximal ATP production drops 

from 68.4 to 67.7. The relative change is just about 1% which 

is hard to recognize phenotypically or by measurements. 

At the same time the variability of fluxes changes signifi-

cantly (Fig. 1, unaffected case and ASPGLUm case). Relatively 

wide flux variability ranges of the unaffected case indicate 

flexibility and robustness (Vo, 2007) of the network to produce 

68.4 units of ATP. The changes in flux range of one reaction 

can be compensated by adaptation of other reactions. In the 

case of deleted ASPGLUm the flux variability of most of reac-

tions is very small, represented by a line (Fig. 1). That means 

any limitations in any of those reactions will cause reduction 

of ATP production. In other words there is very limited number 

of alternatives and the ATP production has stayed almost at the 

same level as in unaffected case but has become very fragile. 

In case of unaffected model there are just two nonzero fluxes 

without significant variability: CYOR-u10m and SUCD3-

u10m. In case of ASPGLUm the number of such reactions in-

crease to 50 out of 60 indicating loss of flexibility and robust-

ness. 

3.2. Comparison of deletion of reaction SUCCOASm 

corresponding gene SUCLG2 with unaffected case 

model 

The deletion of SUCLG2 gene causes about 50% reduction 

in the network ability to produce ATP. The maximal ATP pro-

duction drops from 68.4 to 34.0. At the same time the large 

reduction of maximal production capacity has brought also 

large spectrum of alternatives and 34.0 units of ATP can be 

produced in many ways using alternative paths demonstrating 

flexibility and robustness. The flux variability ranges are high-

er that in the unaffected case. Only one nonzero reaction PIt2m 

has to perform at particular speed to keep 34.0 units of ATP 

production. In addition many reactions with nonzero values in 

unaffected case and ASPGLUm deletion case can have even 

zero values in case of reaction SUCCOASm deletion. There are 

just a couple of reactions that have to be at nonzero fluxes 

(ASPTAm and CSm). That means deletion of any other reaction 

out of 60 reactions of interest would not cause further reduc-

tion of maximal ATP production below 34.0 units. 

Another feature of deletion of reaction SUCCOASm corre-

sponding gene SUCLG2 is the fact that flux variability range 

of reaction PIt2m has no overlap with other two cases. After 

deletion the range is 32-33 units while in case of unaffected 

model it is 48-99 and in ASPGLUm case it is 50-70. This non-

overlapping flux variability range could be used for diagnos-

tics purposes. In our model reaction SUCCOASm utilizes inor-

ganic phosphate in the reversible reaction with the formation 

of nucleoside triphosphate (NTP) from nucleoside diphosphate 

(NDP) and inorganic phosphate. We can speculate that partial 

failure of reaction PIt2m in the mitochondrial metabolic net-

work model is caused by inorganic phosphate deficiency.  

Also carbon dioxide transport from mitochondria to 

citoplasm in unaffected case (the flux bounds 100-132) and 

SUCCOASm reaction deletion case (the flux bounds 7 - 128) 

shows steady state possibilities with even 10 times smaller 

flux. This allows to speculate that decreased flux in mitochon-

diral carbon dioxide transport shows decreased TCA cycle 

overall flux in SUCCOASm deletion case, because most of all 

carbon dioxide in mitochondria is produced in TCA cycle. 
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Fig. 1. The results of flux variability analysis for three cases maximizing ATP production: 1) unaffected mitochondria model, 2) deletion of SUCLG2 and 3) deletion of 

SLC25A12. The units of fluxes are μmol/min/g of proteins. 
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3.3. Advantages and limitations of approach 

The presented analysis of gene deletions has been based on 

the flux variability analysis assuming that the network aims to 

maximize ATP production. More complex approach with sev-

eral criteria should be used to assess the multifunctionality of 

the network. Production of heme, phospholipids (Vo et al., 

2004) and others should be taken into account as well. That 

could be done fixing reaction rates for some branches to ensure 

production of some metabolites. This kind of analysis per-

formed for several other objective functions that are critical for 

the functionality of mitochondria could give additional results 

or could indicate need of improvement of the model. 

Another drawback of the proposed approach is the fact that 

the reduction of ATP production capacity in case of suboptimal 

fluxes (not all reactions can have fluxes within flux variability 

range) may be large or small. In case of small reduction the 

deletion impact would be less observable than in case of sharp 

decrease of ATP production. On the other hand even more 

promising would be analysis of the newest measurements of 

mitochondrial metabolism giving additional constraints to the 

model thus improving it’s quality. 

The reactions with non-overlapping flux variability range 

can be very informative for the diagnostics of deficiency of 

particular gene. Still the experiments demonstrated that there 

are just few reactions with non-overlapping range. Even in 

those cases the difference between the flux ranges of reactions 

may be hard to measure the difference with necessary accura-

cy. 

The analysis of widening of the flux variability range also 

can be perspective as detection of zero flux could be easier 

task experimentally. Adding on that the layer of pathway scale 

analysis it could be possible to develop new constraints for 

improvement of the model that could lead to increase of reac-

tions with non-overlapping flux variability range. 

The above described approach of flux variability analysis 

could be efficient for other processes of interest depending on 

the accuracy of model and peculiarities of he process. The ad-

vantages of the approach are the small amount of necessary 

calculations because of application of linear algebra methods 

and possibility to analyze medium scale and even larger mod-

els. 

4. Conclusion 

Flux variability analysis of reconstruction based model of 

mitochondrial metabolism and model with deleted SLC25A12 

gene show very similar results. The deletion of SLC25A12 

causes the reductions of maximal ATP production from 68.4 to 

67.7 that is about one percent and would be hardly observable. 

At the same time the deletion reduces the flexibility and ro-

bustness of network as capacity limitations of any reaction can 

lead to decrease of maximal ATP production.  

The deletion of SUCLG2 gives decrease of ATP production 

from 68.4 to 34.0. The Flux variability analysis shows mostly 

wider range of values for the model with deletion. There are 

some branches which may have no or very small flux. That is a 

way how the malfunction of SUCLG2 could be detected.  One 

reaction has not overlapping flux variability range that can be 

used for diagnostic purposes. 

Analysis of stoichiometric models in some cases can give 

useful diagnostic hints to find out the level of influence of in-

sufficiency of particular genes by determining gene deletion 

specific profile of metabolism. 

That can be done by determination of reactions with non-

overlapping flux variability range comparing performance of 

unaffected model and model with gene deletion or analyzing 

the widening of flux variability range towards zero fluxes 
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